ترغب بنشر مسار تعليمي؟ اضغط هنا

HD0L-$omega$-equivalence and periodicity problems in the primitive case (to the memory of G. Rauzy)

210   0   0.0 ( 0 )
 نشر من قبل Fabien Durand
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Fabien Durand




اسأل ChatGPT حول البحث

In this paper I would like to witness the mathematical inventiveness of G. Rauzy through personnal exchanges I had with him. The objects that will emerge will be used to treat the decidability of the HD 0 L $omega$-equivalence and periodicity problems in the primitive case.

قيم البحث

اقرأ أيضاً

Signed graphs are graphs whose edges get a sign $+1$ or $-1$ (the signature). Signed graphs can be studied by means of graph matrices extended to signed graphs in a natural way. Recently, the spectra of signed graphs have attracted much attention fro m graph spectra specialists. One motivation is that the spectral theory of signed graphs elegantly generalizes the spectral theories of unsigned graphs. On the other hand, unsigned graphs do not disappear completely, since their role can be taken by the special case of balanced signed graphs. Therefore, spectral problems defined and studied for unsigned graphs can be considered in terms of signed graphs, and sometimes such generalization shows nice properties which cannot be appreciated in terms of (unsigned) graphs. Here, we survey some general results on the adjacency spectra of signed graphs, and we consider some spectral problems which are inspired from the spectral theory of (unsigned) graphs.
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this prob lem for trees and prove that the minimum bisection width of every tree $T$ on $n$ vertices satisfies $MinBis(T) leq 8 n Delta(T) / diam(T)$. Second, we generalize this to arbitrary graphs with a given tree decomposition $(T,X)$ and give an upper bound on the minimum bisection width that depends on the structure of $(T,X)$. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
We count the numbers of primitive periodic orbits on families of 4-regular directed circulant graphs with $n$ vertices. The relevant counting techniques are then extended to count the numbers of primitive pseudo orbits (sets of distinct primitive per iodic orbits) up to length $n$ that lack self-intersections, or that never intersect at more than a single vertex at a time repeated exactly twice for each self-intersection (2-encounters of length zero), for two particular families of graphs. We then regard these two families of graphs as families of quantum graphs and use the counting results to compute the variance of the coefficients of the quantum graphs characteristic polynomial.
Suppose that the vertices of a graph $G$ are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study the problem of finding a majority vertex (or show that none exists) if we can query edges to learn whether their endpoints have the same or different colors. Denote the least number of queries needed in the worst case by $m(G)$. It was shown by Saks and Werman that $m(K_n)=n-b(n)$, where $b(n)$ is the number of 1s in the binary representation of $n$. In this paper, we initiate the study of the problem for general graphs. The obvious bounds for a connected graph $G$ on $n$ vertices are $n-b(n)le m(G)le n-1$. We show that for any tree $T$ on an even number of vertices we have $m(T)=n-1$ and that for any tree $T$ on an odd number of vertices, we have $n-65le m(T)le n-2$. Our proof uses results about the weighted version of the problem for $K_n$, which may be of independent interest. We also exhibit a sequence $G_n$ of graphs with $m(G_n)=n-b(n)$ such that $G_n$ has $O(nb(n))$ edges and $n$ vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا