ترغب بنشر مسار تعليمي؟ اضغط هنا

Open problems in the spectral theory of signed graphs

79   0   0.0 ( 0 )
 نشر من قبل Sebastian M. Cioab\\u{a}
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Signed graphs are graphs whose edges get a sign $+1$ or $-1$ (the signature). Signed graphs can be studied by means of graph matrices extended to signed graphs in a natural way. Recently, the spectra of signed graphs have attracted much attention from graph spectra specialists. One motivation is that the spectral theory of signed graphs elegantly generalizes the spectral theories of unsigned graphs. On the other hand, unsigned graphs do not disappear completely, since their role can be taken by the special case of balanced signed graphs. Therefore, spectral problems defined and studied for unsigned graphs can be considered in terms of signed graphs, and sometimes such generalization shows nice properties which cannot be appreciated in terms of (unsigned) graphs. Here, we survey some general results on the adjacency spectra of signed graphs, and we consider some spectral problems which are inspired from the spectral theory of (unsigned) graphs.

قيم البحث

اقرأ أيضاً

We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,sigma)$, equipped with lists $L(v) subseteq V(H), v in V(G)$, of al lowed images, to a fixed target signed graph $(H,pi)$. The complexity of the similar homomorphism problem without lists (corresponding to all lists being $L(v)=V(H)$) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when $H$ is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterized the polynomial cases of list homomorphisms to unsigned graphs).
We introduce a family of multi-way Cheeger-type constants ${h_k^{sigma}, k=1,2,ldots, n}$ on a signed graph $Gamma=(G,sigma)$ such that $h_k^{sigma}=0$ if and only if $Gamma$ has $k$ balanced connected components. These constants are switching invari ant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, those measures of bipartiteness introduced by Desai-Rao, Trevisan, Bauer-Jost, respectively, on unsigned graphs,, and the frustration index (originally called the line index of balance by Harary) on signed graphs. We further unify the (higher-order or improved) Cheeger and dual Cheeger inequalities for unsigned graphs as well as the underlying algorithmic proof techniques by establishing their correspondi
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the width of the bisection, which is defined as the number of edges between these two sets. We first consider this prob lem for trees and prove that the minimum bisection width of every tree $T$ on $n$ vertices satisfies $MinBis(T) leq 8 n Delta(T) / diam(T)$. Second, we generalize this to arbitrary graphs with a given tree decomposition $(T,X)$ and give an upper bound on the minimum bisection width that depends on the structure of $(T,X)$. Moreover, we show that a bisection satisfying our general bound can be computed in time proportional to the encoding length of the tree decomposition when the latter is provided as input.
A signed graph is a pair $(G, sigma)$, where $G$ is a graph and $sigma: E(G) to {+, -}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular colorin g of graphs to signed graphs. Given a signed graph $(G, sigma)$ a circular $r$-coloring of $(G, sigma)$ is an assignment $psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $sigma(e)=+$, then $psi(u)$ and $psi(v)$ have distance at least $1$, and if $sigma(e)=-$, then $psi(v)$ and the antipodal of $psi(u)$ have distance at least $1$. The circular chromatic number $chi_c(G, sigma)$ of a signed graph $(G, sigma)$ is the infimum of those $r$ for which $(G, sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $max{chi_c(G, sigma): sigma text{ is a signature of $G$}}$. We study basic properties of circular coloring of signed graphs and develop tools for calculating $chi_c(G, sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular, we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of M{a}v{c}ajov{a}, Raspaud, and v{S}koviera.
Suppose that the vertices of a graph $G$ are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study the problem of finding a majority vertex (or show that none exists) if we can query edges to learn whether their endpoints have the same or different colors. Denote the least number of queries needed in the worst case by $m(G)$. It was shown by Saks and Werman that $m(K_n)=n-b(n)$, where $b(n)$ is the number of 1s in the binary representation of $n$. In this paper, we initiate the study of the problem for general graphs. The obvious bounds for a connected graph $G$ on $n$ vertices are $n-b(n)le m(G)le n-1$. We show that for any tree $T$ on an even number of vertices we have $m(T)=n-1$ and that for any tree $T$ on an odd number of vertices, we have $n-65le m(T)le n-2$. Our proof uses results about the weighted version of the problem for $K_n$, which may be of independent interest. We also exhibit a sequence $G_n$ of graphs with $m(G_n)=n-b(n)$ such that $G_n$ has $O(nb(n))$ edges and $n$ vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا