ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in alkali-earth metals doped phenanthrene

194   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X. F. Wang




اسأل ChatGPT حول البحث

We discover superconductivity in alkali-earth metals doped phenanthrene. The superconducting critical temperatures emph{T}$_c$ are 5.6 K and 5.4 K for Sr$_{1.5}$phenanthrene and Ba$_{1.5}$phenanthrene, respectively. The shielding fraction of Ba$_{1.5}$phenanthrene exceeds 65%. The Raman spectra show 8 cm$^{-1}$/electron and 7 cm$^{-1}$/electron downshifts for the mode at 1441 cm$^{-1}$ due to the charge transfer to organic molecules from the dopants of Ba and Sr. Similar behavior has been observed in A$_3$phenanthrene and A$_3$C$_{60}$(A = K and Rb). The positive pressure effect in Sr$_{1.5}$phenanthrene and Ba$_{1.5}$phenanthrene together with the lower $T_c$ with larger lattice indicates unconventional superconductivity in this organic system.



قيم البحث

اقرأ أيضاً

176 - X. F. Wang , R. H. Liu , Z. Gui 2011
Organic materials are believed to be potential superconductor with high transition temperature (TC). Organic superconductors mainly have two families: the quasi-one dimensional (TMTSF)2X and two dimensional (BEDT-TTF)2X (Ref. 1 and 2), in which TMTSF is tetramethyltetraselenafulvalene (C10H12Se4) and BEDT-TTF or ET is bis(ethylenedithio)tetrathiafulvalene (C10H8S8). One key feature of the organic superconductors is that they have {pi}-molecular orbitals, and the {pi}-electron can delocalize throughout the crystal giving rise to metallic conductivity due to a {pi}-orbital overlap between adjacent molecules. The introduction of charge into C60 solids and graphites with {pi}-electron networks by doping to realize superconductivity has been extensively reported3,4. Very recently, superconductivity in alkali-metal doped picene with {pi}-electron networks was reported5. Here we report the discovery of superconductivity in potassium doped Phenanthrene with TC~5 K. TC increases with increasing pressure, and the pressure of 1 GPa leads to an increase of 20% in TC, suggesting that the potassium doped phenanthrene shows unconventional superconductivity. Both phenanthrene and picene are polycyclic aromatic hydrocarbons, and contain three and five fused benzene rings, respectively. The ribbon of fused benzene rings is part of graphene. Therefore, the discovery of superconductivity in K3Phenanthrene produces a novel broad class of superconductors consisting of fused hydrocarbon benzene rings with {pi}-electron networks. The fact that TC increases from 5 K for KxPhenanthrene with three benzene rings to 18 K for Kxpicene with five benzene rings suggests that such organic hydrocarbons with long benzene rings is potential superconductor with high TC.
511 - S. R. Saha , N. P. Butch , T. Drye 2011
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering exp eriments indicate that an isostructural collapse of the tetragonal unit cell can be controllably induced at ambient pressures by choice of substituent ion size. This instability is driven by the interlayer As-As anion separation, resulting in an unprecedented thermal expansion coefficient of $180times 10^{-6}$ K$^{-1}$. Electrical transport and magnetic susceptibility measurements reveal abrupt changes in the physical properties through the collapse as a function of temperature, including a reconstruction of the electronic structure. Superconductivity with onset transition temperatures as high as 47 K is stabilized by the suppression of antiferromagnetic order via chemical pressure, electron doping or a combination of both. Extensive investigations are performed to understand the observations of partial volume-fraction diamagnetic screening, ruling out extrinsic sources such as strain mechanisms, surface states or foreign phases as the cause of this superconducting phase that appears to be stable in both collapsed and uncollapsed structures.
High-pressure superconductivity in a rare-earth doped Ca0.86Pr0.14Fe2As2 single crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low temperature x-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ~51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 1-2-2 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ~48 K, and the other starting at Tc2~16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure low temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure. Our high pressure studies indicate that high Tc state attributed to non-bulk superconductivity in rare-earth doped 1-2-2 iron-based superconductors is stable under compression over a broad pressure range.
111 - Wei Li , Hao Ding , Pengfei Zhang 2012
We prepare single layer potassium-doped iron selenide (110) film by molecular beam expitaxy. Such a single layer film can be viewed as a two-dimensional system composed of weakly coupled two-leg iron ladders. Scanning tunneling spectroscopy reveals t hat superconductivity is developed in this two-leg ladder system. The superconducting gap is similar to that of the multi-layer films. However, the Fermi surface topology given by first-principles calculation is remarkably different from that of the bulk materials. Our results suggest that superconducting pairing is very short-ranged or takes place rather locally in iron-chalcogenides. The superconductivity is most likely driven by electron-electron correlation effect and is insensitive to the change of Fermi surfaces.
New germanium-platinum compounds with the filled-skutterudite crystal structure were synthesized. The structure and composition were investigated by X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific heat, and electrical res istivity measurements evidence superconductivity in LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and superconducting states were established. Strong coupling and a crystal electric field singlet groundstate is found for the Pr compound. Electronic structure calculations show a large density of states at the Fermi level. Similar behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا