ﻻ يوجد ملخص باللغة العربية
The nuclear modification factor is derived using Tsallis non-extensive statistics in relaxation time approximation. The variation of nuclear modification factor with transverse momentum for different values of non-extensive parameter, $q$, is also observed. The experimental data from RHIC and LHC are analysed in the framework of Tsallis non-extensive statistics in a relaxation time approximation. It is shown that the proposed approach explains the $R_{AA}$ of all particles over a wide range of transverse momenta but doesnt seem to describe the rise in $R_{AA}$ at very high transverse momenta.
Relativistic heavy ion collisions, which are performed at large experimental programs such as Relativistic Heavy Ion Colliders (RHIC) STAR experiment and the Large Hadron Colliders (LHC) experiments, can create an extremely hot and dense state of the
The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possib
In the continuation of our previous work, the transverse momentum ($p_T$) spectra and nuclear modification factor ($R_{AA}$) are derived using relaxation time approximation of Boltzmann Transport Equation (BTE). The initial $p_T$-distribution used to
The possibility of formation of Bose-Einstein Condensation (BEC) is studied in $pp$ collisions at $sqrt s$ = 7 TeV at the Large Hadron Collider. A thermodynamically consistent non-extensive formulation of the identified hadron transverse momentum dis
The successive stages of a high-energy collision are conjectured to end up with chemical and thermal freezeout of the produced particles. We utilize generic (non)extensive statistics which is believed to determine the degree of (non)extensivity throu