ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability and stellar populations with deep optical-IR images of the Milky Way disk: matching VVV with VLT/VIMOS data

41   0   0.0 ( 0 )
 نشر من قبل Pawel Pietrukowicz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Pietrukowicz




اسأل ChatGPT حول البحث

We have used deep V-band and JHKs-band observations to investigate variability and stellar populations near the Galactic plane in Centaurus, and compared the observations with the Galactic model of Besancon. By applying image subtraction technique to a series of over 580 V-band frames taken with the ESO VLT/VIMOS instrument during two contiguous nights in April 2005, we have detected 333 variables among 84,734 stars in the brightness range 12.7<V<26.0 mag. Infrared data collected in March 2010 with the new ESO VISTA telescope allowed us to construct deep combined optical-IR colour-magnitude and colour-colour diagrams. All detected variables but four transit candidates are reported for the first time. The majority of the variables are eclipsing/ellipsoidal binaries and delta Scuti-type pulsators. The occurrence rate of eclipsing/ellipsoidal variables reached ~0.28% of all stars. This is very close to the highest fraction of binary systems detected using ground-based data so far (0.30%), but still about four times less than the average occurrence rate recently obtained from the Kepler space mission after 44 days of operation. Comparison of the observed Ks vs. V-Ks diagram with a diagram based on the Besancon model shows significant effects of both distance and reddening in the investigated direction of the sky. We demonstrate that the best model indicates the presence of absorbing clouds at distances 11-13 kpc from the Sun in the minor Carina-Sagittarius Arm.

قيم البحث

اقرأ أيضاً

We present the first stellar density profile of the Milky Way bulge reaching latitude $b=0^circ$. It is derived by counting red clump stars within the colour--magnitude diagram constructed with the new PSF-fitting photometry from VISTA Variables in t he Vi a Lactea (VVV) survey data. The new stellar density map covers the area between $|l|leq 10^circ$ and $|b|leq 4.5^circ$ with unprecedented accuracy, allowing to establish a direct link between the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and the stellar mass density distribution. In particular, the location of the central velocity dispersion peak from GIBS matches a high overdensity in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and remnants of the Galactic bulge. The Milky Way bulge stellar mass within ($|b|<9.5^circ$, $|l|<10^circ$) is $2.0pm0.3times 10^{10}M_{odot}$.
67 - F. Surot 2019
Recent observational programmes are providing a global view of the Milky Way bulge that serves as template for detailed comparison with models and extragalactic bulges. A number of surveys (i.e. VVV, GIBS, GES, ARGOS, BRAVA, APOGEE) are producing com prehensive and detailed extinction, metallicity, kinematics and stellar density maps of the Galactic bulge with unprecedented accuracy. However, the still missing key ingredient is the distribution of stellar ages across the bulge. To overcome this limitation, we aim to age-date the stellar population in several bulge fields with the ultimate goal of deriving an age map of the Bulge. This paper presents the methodology and the first results obtained for a field along the Bulge minor axis, at $b=-6^circ$. We use a new PSF-fitting photometry of the VISTA Variables in the V{i}a L{a}ctea (VVV) survey data to construct deep color-magnitude diagrams of the bulge stellar population down to $sim$ 2 mag below the Main Sequence turnoff. We find the bulk of the bulge stellar population in the observed field along the minor axis to be at least older than $sim$ 7.5 Gyr. In particular, when the metallicity distribution function spectroscopically derived by GIBS is used, the best fit to the data is obtained with a combination of synthetic populations with ages in between $sim$ 7.5 Gyr and 11 Gyr. However, the fraction of stars younger than $sim$ 10 Gyr strongly depends upon the number of Blue Straggler Stars present in the bulge. Simulations show that the observed color-magnitude diagram of the bulge in the field along the minor axis is incompatible with the presence of a conspicuous population of intermediate-age/young (i.e. $lesssim 5$ Gyr) stars.
We describe the public ESO near-IR variability survey (VVV) scanning the Milky Way bulge and an adjacent section of the mid-plane where star formation activity is high. The survey will take 1929 hours of observations with the 4-metre VISTA telescope during five years (2010-2014), covering ~10^9 point sources across an area of 520 deg^2, including 33 known globular clusters and ~350 open clusters. The final product will be a deep near-IR atlas in five passbands (0.9-2.5 microns) and a catalogue of more than 10^6 variable point sources. Unlike single-epoch surveys that, in most cases, only produce 2-D maps, the VVV variable star survey will enable the construction of a 3-D map of the surveyed region using well-understood distance indicators such as RR Lyrae stars, and Cepheids. It will yield important information on the ages of the populations. The observations will be combined with data from MACHO, OGLE, EROS, VST, Spitzer, HST, Chandra, INTEGRAL, WISE, Fermi LAT, XMM-Newton, GAIA and ALMA for a complete understanding of the variable sources in the inner Milky Way. This public survey will provide data available to the whole community and therefore will enable further studies of the history of the Milky Way, its globular cluster evolution, and the population census of the Galactic Bulge and center, as well as the investigations of the star forming regions in the disk. The combined variable star catalogues will have important implications for theoretical investigations of pulsation properties of stars.
We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE ) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. The metallicity at disc plane remains almost constant between 2 and 8 Gyr, and it becomes significantly lower for the $8 < tau leqslant 11$ Gyr population. The current analysis also reveals that the intrinsic dispersion in metallicity increases steadily with age. We discuss that our results are consistent with a scenario that (thin) disc stars formed from a flaring (thin) star-forming disc.
Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [alpha/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance p opulations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemo-dynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[alpha/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [alpha/Fe]-values a MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr/kpc. Positive radial age gradients can result for MAPs at the lowest [alpha/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale-height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1-4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on the Galactic formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا