ترغب بنشر مسار تعليمي؟ اضغط هنا

The relationship between mono-abundance and mono-age stellar populations in the Milky Way disk

132   0   0.0 ( 0 )
 نشر من قبل Ivan Minchev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [alpha/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemo-dynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[alpha/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [alpha/Fe]-values a MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr/kpc. Positive radial age gradients can result for MAPs at the lowest [alpha/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale-height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1-4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on the Galactic formation and evolution.



قيم البحث

اقرأ أيضاً

We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE ) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. The metallicity at disc plane remains almost constant between 2 and 8 Gyr, and it becomes significantly lower for the $8 < tau leqslant 11$ Gyr population. The current analysis also reveals that the intrinsic dispersion in metallicity increases steadily with age. We discuss that our results are consistent with a scenario that (thin) disc stars formed from a flaring (thin) star-forming disc.
We present a detailed determination and analysis of 3D stellar mass distribution of the Galactic disk for mono-age populations using a sample of 0.93 million main-sequence turn-off and subgiant stars from the LAMOST Galactic Surveys. Our results show (1) all stellar populations younger than 10,Gyr exhibit strong disk flaring, which is accompanied with a dumpy vertical density profile that is best described by a $sech^n$ function with index depending on both radius and age; (2) Asymmetries and wave-like oscillations are presented in both the radial and vertical direction, with strength varying with stellar populations; (3) As a contribution by the Local spiral arm, the mid-plane stellar mass density at solar radius but 400--800,pc (3--6$^circ$) away from the Sun in the azimuthal direction has a value of $0.0594pm0.0008$,$M_odot$/pc$^3$, which is 0.0164,$M_odot$/pc$^3$ higher than previous estimates at the solar neighborhood. The result causes doubts on the current estimate of local dark matter density; (4) The radial distribution of surface mass density yields a disk scale length evolving from $sim$4,kpc for the young to $sim$2,kpc for the old populations. The overall population exhibits a disk scale length of $2.48pm0.05$,kpc, and a total stellar mass of $3.6(pm0.1)times10^{10}$,$M_odot$ assuming $R_{odot}=8.0$,kpc, and the value becomes $4.1(pm0.1)times10^{10}$,$M_odot$ if $R_{odot}=8.3$,kpc; (5) The disk has a peak star formation rate ({rm SFR}) changing from 6--8,Gyr at the inner to 4--6,Gyr ago at the outer part, indicating an inside-out assemblage history. The 0--1,Gyr population yields a recent disk total {rm SFR} of $1.96pm0.12$,$M_odot$/yr.
117 - T. Bensby , S. Feltzing , A. Gould 2017
The four main findings about the age and abundance structure of the Milky Way bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity distribution with distinct peaks at [Fe/H]=-1.09, -0.63, -0.20, +0.12, +0.41; (2) a high fra ction of intermediate-age to young stars where at [Fe/H]>0 more than 35 % are younger than 8 Gyr, (3) several episodes of significant star formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the `knee in the alpha-element abundance trends of the sub-solar metallicity bulge appears to be located at a slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local thick disk.
115 - Zheng Yu , Ji Li , Bingqiu Chen 2021
Using a sample of 96,201 primary red clump (RC) stars selected from the LAMOST and Gaia surveys, we investigate the stellar structure of the Galactic disk. The sample stars show two separated sequences of high-[{alpha}/Fe] and low-[{alpha}/Fe] in the [{alpha}/Fe]-[Fe/H] plane. We divide the sample stars into five mono-abundance populations (MAPs) with different ranges of [{alpha}/Fe] and [Fe/H], named as the high-[{alpha}/Fe], high-[{alpha}/Fe] & high-[Fe/H], low-[Fe/H], solar, high-[Fe/H] MAPs respectively. We present the stellar number density distributions in the R R Z plane, and the scale heights and scale lengths of the individual MAPs by fitting their vertical and radial density profiles. The vertical profiles, the variation trend of scale height with the Galactocentric radius, indicate that there is a clear disk flare in the outer disk both for the low-[{alpha}/Fe] and the high-[{alpha}/Fe] MAPs. While the radial surface density profiles show a peak radius of 7 kpc and 8 kpc for the high-[{alpha}/Fe] and low-[{alpha}/Fe] MAPs, respectively. We also investigate the correlation between the mean rotation velocity and metallicity of the individual MAPs, and find that the mean rotation velocities are well separated and show different trends between the high-[{alpha}/Fe] and the low-[{alpha}/Fe] MAPs. At last, we discuss the character of the high-[{alpha}/Fe] & high-[Fe/H] MAP and find that it is more similar to the high-[{alpha}/Fe] MAP either in the radial and vertical density profiles or in the rotation velocity.
We study seven simulated disc galaxies, three with a quiescent merger history, and four with mergers in their last 9 Gyr of evolution. We compare their structure at z=0 by decomposing them into mono-age populations (MAPs) of stars within 500 Myr age bins. All studied galaxies undergo a phase of merging activity at high redshift, so that stars older than 9 Gyr are found in a centrally concentrated component, while younger stars are mostly found in discs. We find that most MAPs have simple exponential radial and vertical density profiles, with a scale-height that typically increases with age. Because a large range of merger histories can create populations with simple structures, this suggests that the simplicity of the structure of mono-abundance populations observed in the Milky Way by Bovy et al. (2012b,c) is not necessarily a direct indicator of a quiescent history for the Milky Way. Similarly, the anti-correlation between scale-length and scale-height does not necessarily imply a merger-free history. However, mergers produce discontinuities between thin and thick disc components, and jumps in the age-velocity relation. The absence of a structural discontinuity between thin and thick disc observed in the Milky Way would seem to be a good indicator that no merger with a mass ratio larger than 1:15-1:10 occurred in the last 9 Gyr. Mergers at higher redshift might nevertheless be necessary to produce the thickest, hottest components of the Milky Ways disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا