ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-tier Network Performance Analysis using a Shotgun Cellular System

164   0   0.0 ( 0 )
 نشر من قبل Prasanna Madhusudhanan
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies the carrier-to-interference ratio (CIR) and carrier-to-interference-plus-noise ratio (CINR) performance at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by the homogeneous Poisson point process in n-D. The CIR and CINR at the MS in a single tier network are thoroughly analyzed to simplify the analysis of the multi-tier network. For the multi-tier network with given system parameters, the following are the main results of this paper: (1) semi-analytical expressions for the tail probabilities of CIR and CINR; (2) a closed form expression for the tail probability of CIR in the range [1,Infinity); (3) a closed form expression for the tail probability of an approximation to CIR in the entire range [0,Infinity); (4) a lookup table based approach for obtaining the tail probability of CINR, and (5) the study of the effect of shadow fading and BSs with ideal sectorized antennas on the CIR and CINR. Based on these results, it is shown that, in a practical cellular system, the installation of additional wireless networks (microcells, picocells and femtocells) with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.



قيم البحث

اقرأ أيضاً

Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sigh t (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.
78 - Jeonghun Park , Namyoon Lee , 2017
We characterize the ergodic spectral efficiency of a non-cooperative and a cooperative type of K-tier heterogeneous networks with limited feedback. In the non-cooperative case, a multi-antenna base station (BS) serves a single-antenna user using maxi mum-ratio transmission based on limited feedback. In the cooperative case, a BS coordination set is formed by using dynamic clustering across the tiers, wherein the intra-cluster interference is mitigated by using multi-cell zero-forcing also based on limited feedback. Modeling the network based on stochastic geometry, we derive analytical expressions for the ergodic spectral efficiency as a function of the system parameters. Leveraging the obtained expressions, we formulate feedback partition problems and obtain solutions to improve the ergodic spectral efficiency. Simulations show the spectral efficiency improvement by using the obtained feedback partitions. Our major findings are as follows: 1) In the non-cooperative case, the feedback is only useful in a particular tier if the mean interference is small enough. 2) In the cooperative case, allocating more feedback to stronger intra-cluster BSs is efficient. 3) In both cases, the obtained solutions do not change depending on instantaneous signal-to-interference ratio.
A simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain non-h omogeneous Poisson point processes. The comparison is conveniently done by studying only the base station densities without having to solve for the distributions of the carrier-to-interference ratio, that are often hard to obtain.
In this paper, a comprehensive study of the the downlink performance in a heterogeneous cellular network (or hetnet) is conducted. A general hetnet model is considered consisting of an arbitrary number of open-access and closed-access tier of base st ations (BSs) arranged according to independent homogeneous Poisson point processes. The BSs of each tier have a constant transmission power, random fading coefficient with an arbitrary distribution and arbitrary path-loss exponent of the power-law path-loss model. For such a system, analytical characterizations for the coverage probability and average rate at an arbitrary mobile-station (MS), and average per-tier load are derived for both the max-SINR connectivity and nearest-BS connectivity models. Using stochastic ordering, interesting properties and simplifications for the hetnet downlink performance are derived by relating these two connectivity models to the maximum instantaneous received power (MIRP) connectivity model and the maximum biased received power (MBRP) connectivity models, respectively, providing good insights about the hetnets and the downlink performance in these complex networks. Furthermore, the results also demonstrate the effectiveness and analytical tractability of the stochastic geometric approach to study the hetnet performance.
In this paper, we consider the downlink signal-to-interference-plus-noise ratio (SINR) analysis in a heterogeneous cellular network with K tiers. Each tier is characterized by a base-station (BS) arrangement according to a homogeneous Poisson point p rocess with certain BS density, transmission power, random shadow fading factors with arbitrary distribution, arbitrary path-loss exponent and a certain bias towards admitting the mobile-station (MS). The MS associates with the BS that has the maximum SINR under the open access cell association scheme. For such a general setting, we provide an analytical characterization of the coverage probability at the MS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا