ﻻ يوجد ملخص باللغة العربية
This paper studies the carrier-to-interference ratio (CIR) and carrier-to-interference-plus-noise ratio (CINR) performance at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by the homogeneous Poisson point process in n-D. The CIR and CINR at the MS in a single tier network are thoroughly analyzed to simplify the analysis of the multi-tier network. For the multi-tier network with given system parameters, the following are the main results of this paper: (1) semi-analytical expressions for the tail probabilities of CIR and CINR; (2) a closed form expression for the tail probability of CIR in the range [1,Infinity); (3) a closed form expression for the tail probability of an approximation to CIR in the entire range [0,Infinity); (4) a lookup table based approach for obtaining the tail probability of CINR, and (5) the study of the effect of shadow fading and BSs with ideal sectorized antennas on the CIR and CINR. Based on these results, it is shown that, in a practical cellular system, the installation of additional wireless networks (microcells, picocells and femtocells) with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.
Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sigh
We characterize the ergodic spectral efficiency of a non-cooperative and a cooperative type of K-tier heterogeneous networks with limited feedback. In the non-cooperative case, a multi-antenna base station (BS) serves a single-antenna user using maxi
A simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain non-h
In this paper, a comprehensive study of the the downlink performance in a heterogeneous cellular network (or hetnet) is conducted. A general hetnet model is considered consisting of an arbitrary number of open-access and closed-access tier of base st
In this paper, we consider the downlink signal-to-interference-plus-noise ratio (SINR) analysis in a heterogeneous cellular network with K tiers. Each tier is characterized by a base-station (BS) arrangement according to a homogeneous Poisson point p