ترغب بنشر مسار تعليمي؟ اضغط هنا

A Normalization Model for Analyzing Multi-Tier Millimeter Wave Cellular Networks

72   0   0.0 ( 0 )
 نشر من قبل Tao Han
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.

قيم البحث

اقرأ أيضاً

78 - Jeonghun Park , Namyoon Lee , 2017
We characterize the ergodic spectral efficiency of a non-cooperative and a cooperative type of K-tier heterogeneous networks with limited feedback. In the non-cooperative case, a multi-antenna base station (BS) serves a single-antenna user using maxi mum-ratio transmission based on limited feedback. In the cooperative case, a BS coordination set is formed by using dynamic clustering across the tiers, wherein the intra-cluster interference is mitigated by using multi-cell zero-forcing also based on limited feedback. Modeling the network based on stochastic geometry, we derive analytical expressions for the ergodic spectral efficiency as a function of the system parameters. Leveraging the obtained expressions, we formulate feedback partition problems and obtain solutions to improve the ergodic spectral efficiency. Simulations show the spectral efficiency improvement by using the obtained feedback partitions. Our major findings are as follows: 1) In the non-cooperative case, the feedback is only useful in a particular tier if the mean interference is small enough. 2) In the cooperative case, allocating more feedback to stronger intra-cluster BSs is efficient. 3) In both cases, the obtained solutions do not change depending on instantaneous signal-to-interference ratio.
This paper studies the carrier-to-interference ratio (CIR) and carrier-to-interference-plus-noise ratio (CINR) performance at the mobile station (MS) within a multi-tier network composed of M tiers of wireless networks, with each tier modeled as the homogeneous n-dimensional (n-D, n=1,2, and 3) shotgun cellular system, where the base station (BS) distribution is given by the homogeneous Poisson point process in n-D. The CIR and CINR at the MS in a single tier network are thoroughly analyzed to simplify the analysis of the multi-tier network. For the multi-tier network with given system parameters, the following are the main results of this paper: (1) semi-analytical expressions for the tail probabilities of CIR and CINR; (2) a closed form expression for the tail probability of CIR in the range [1,Infinity); (3) a closed form expression for the tail probability of an approximation to CIR in the entire range [0,Infinity); (4) a lookup table based approach for obtaining the tail probability of CINR, and (5) the study of the effect of shadow fading and BSs with ideal sectorized antennas on the CIR and CINR. Based on these results, it is shown that, in a practical cellular system, the installation of additional wireless networks (microcells, picocells and femtocells) with low power BSs over the already existing macrocell network will always improve the CINR performance at the MS.
This paper studies the problem of distributed beam scheduling for 5G millimeter-Wave (mm-Wave) cellular networks where base stations (BSs) belonging to different operators share the same spectrum without centralized coordination among them. Our goal is to design efficient distributed scheduling algorithms to maximize the network utility, which is a function of the achieved throughput by the user equipment (UEs), subject to the average and instantaneous power consumption constraints of the BSs. We propose a Media Access Control (MAC) and a power allocation/adaptation mechanism utilizing the Lyapunov stochastic optimization framework and non-cooperative games. In particular, we first decompose the original utility maximization problem into two sub-optimization problems for each time frame, which are a convex optimization problem and a non-convex optimization problem, respectively. By formulating the distributed scheduling problem as a non-cooperative game where each BS is a player attempting to optimize its own utility, we provide a distributed solution to the non-convex sub-optimization problem via finding the Nash Equilibrium (NE) of the game whose weights are determined optimally by the Lyapunov optimization framework. Finally, we conduct simulation under various network settings to show the effectiveness of the proposed game-based beam scheduling algorithm in comparison to that of several reference schemes.
Millimeter wave (mmW) cellular systems will require high gain directional antennas and dense base station (BS) deployments to overcome high near field path loss and poor diffraction. As a desirable side effect, high gain antennas provide interference isolation, providing an opportunity to incorporate self-backhauling--BSs backhauling among themselves in a mesh architecture without significant loss in throughput--to enable the requisite large BS densities. The use of directional antennas and resource sharing between access and backhaul links leads to coverage and rate trends that differ significantly from conventional microwave ($mu$W) cellular systems. In this paper, we propose a general and tractable mmW cellular model capturing these key trends and characterize the associated rate distribution. The developed model and analysis is validated using actual building locations from dense urban settings and empirically-derived path loss models. The analysis shows that in sharp contrast to the interference limited nature of $mu$W cellular networks, the spectral efficiency of mmW networks (besides total rate) also increases with BS density particularly at the cell edge. Increasing the system bandwidth, although boosting median and peak rates, does not significantly influence the cell edge rate. With self-backhauling, different combinations of the wired backhaul fraction (i.e. the faction of BSs with a wired connection) and BS density are shown to guarantee the same median rate (QoS).
79 - Simin Xu , Nan Yang , Biao He 2019
We propose a novel analytical framework for evaluating the coverage performance of a millimeter wave (mmWave) cellular network where idle user equipments (UEs) act as relays. In this network, the base station (BS) adopts either the direct mode to tra nsmit to the destination UE, or the relay mode if the direct mode fails, where the BS transmits to the relay UE and then the relay UE transmits to the destination UE. To address the drastic rotational movements of destination UEs in practice, we propose to adopt selection combining at destination UEs. New expression is derived for the signal-to-interference-plus-noise ratio (SINR) coverage probability of the network. Using numerical results, we first demonstrate the accuracy of our new expression. Then we show that ignoring spatial correlation, which has been commonly adopted in the literature, leads to severe overestimation of the SINR coverage probability. Furthermore, we show that introducing relays into a mmWave cellular network vastly improves the coverage performance. In addition, we show that the optimal BS density maximizing the SINR coverage probability can be determined by using our analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا