ﻻ يوجد ملخص باللغة العربية
Spin relaxation in a quantum Hall ferromagnet, where filling is $ u=1, 1/3, 1/5,...$, can be considered in terms of spin wave annihilation/creation processes. Hyperfine coupling with the nuclei of the GaAs matrix provides spin non-conservation in the two-dimensional electron gas and determines spin relaxation in the quantum Hall system. This mechanism competes with spin-orbit coupling channels of spin-wave decay and can even dominate in a low-temperature regime where $T$ is much smaller than the Zeeman gap. In this case the spin-wave relaxation process occurs non-exponentially with time and does not depend on the temperature. The competition of different relaxation channels results in crossovers in the dominant mechanism, leading to non-monotonic behavior of the characteristic relaxation time with the magnetic field. We predict that the relaxation times should reach maxima at $Bsimeq 18,$T in the $ u=1$ Quantum Hall system and at $Bsimeq 12,$T for that of $ u=1/3,$. We estimate these times as $sim10,-,30,mu$s and $sim2,-,5,mu$s, respectively.
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible.
Spin relaxation in quantum Hall ferromagnet regimes is studied. As the initial non-equilibrium state, a coherent deviation of the spin system from the ${vec B}$ direction is considered and the breakdown of this Goldstone-mode state due to hyperfine c
Electron spin relaxation in a spin-polarized quantum Hall state is studied. Long spin relaxation times that are at least an order of magnitude longer than those measured in previous experiments were observed and explained within the spin-exciton rela
A spin-rotation mode emerging in a quantum Hall ferromagnet due to laser pulse excitation is studied. This state, macroscopically representing a rotation of the entire electron spin-system to a certain angle, is not microscopically equivalent to a co
Cyclotron spin-flip excitation in a nu=2 quantum Hall system, being separated from the ground state by a slightly smaller gap than the cyclotron energy and from upper magnetoplasma excitation by the Coulomb gap [S. Dickmann and I.V. Kukushkin, Phys.