ﻻ يوجد ملخص باللغة العربية
Cyclotron spin-flip excitation in a nu=2 quantum Hall system, being separated from the ground state by a slightly smaller gap than the cyclotron energy and from upper magnetoplasma excitation by the Coulomb gap [S. Dickmann and I.V. Kukushkin, Phys. Rev. B 71, 241310(R) (2005) ; L.V. Kulik, I.V. Kukushkin, S. Dickmann, V.E. Kirpichev, A.B. Vankov, A.L. Parakhonsky, J.H. Smet, K. von Klitzing, and W. Wegscheider, Phys. Rev. B 72, 073304 (2005)] cannot relax in a purely electronic way except only with the emission of a shortwave acoustic phonon (k~3*10^7/cm). As a result, relaxation in a modern wide-thickness quantum well occurs very slowly. We calculate the characteristic relaxation time to be ~1s. Extremely slow relaxation should allow the production of a considerable density of zero-momenta cyclotron spin-flip excitations in a very small phase volume, thus forming a highly coherent ensemble - the Bose-Einstein condensate. The condensate state can be controlled by short optical pulses (<1 mcs), switching it on and off.
Electron spin relaxation in a spin-polarized quantum Hall state is studied. Long spin relaxation times that are at least an order of magnitude longer than those measured in previous experiments were observed and explained within the spin-exciton rela
Spin-flip excitations in a quantum Hall electron system at fixed filling factor nu=2 are modelled and studied under conditions of a strong Coulomb interaction when the `Landau level mixing is a dominant factor determining the excitation energy. The `
The Kane-Mele (KM) model is proposed to describe the quantum spin Hall effect of electrons on the two-dimensional honeycomb lattice. Here, we will show that, in a certain parameter region, the London equation is obtained from the effective field theo
Two-dimensional semiconductor quantum dots are studied in the the filling-factor range 2<v<3. We find both theoretical and experimental evidence of a collective many-body phenomenon, where a fraction of the trapped electrons form an incompressible sp
Knot theory provides a powerful tool for the understanding of topological matters in biology, chemistry, and physics. Here knot theory is introduced to describe topological phases in the quantum spin system. Exactly solvable models with long-range in