ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrum of a Feinberg-Zee Random Hopping Matrix

45   0   0.0 ( 0 )
 نشر من قبل Simon Chandler-Wilde Prof
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a new proof of a theorem of Chandler-Wilde, Chonchaiya and Lindner that the spectra of a certain class of infinite, random, tridiagonal matrices contain the unit disc almost surely. It also obtains an analogous result for a more general class of random matrices whose spectra contain a hole around the origin. The presence of the hole forces substantial changes to the analysis.

قيم البحث

اقرأ أيضاً

In this paper we study the spectrum $Sigma$ of the infinite Feinberg-Zee random hopping matrix, a tridiagonal matrix with zeros on the main diagonal and random $pm 1$s on the first sub- and super-diagonals; the study of this non-selfadjoint random ma trix was initiated in Feinberg and Zee (Phys. Rev. E 59 (1999), 6433--6443). Recently Hagger (arXiv:1412.1937, Random Matrices: Theory Appl.}, {bf 4} 1550016 (2015)) has shown that the so-called periodic part $Sigma_pi$ of $Sigma$, conjectured to be the whole of $Sigma$ and known to include the unit disk, satisfies $p^{-1}(Sigma_pi) subset Sigma_pi$ for an infinite class $S$ of monic polynomials $p$. In this paper we make very explicit the membership of $S$, in particular showing that it includes $P_m(lambda) = lambda U_{m-1}(lambda/2)$, for $mgeq 2$, where $U_n(x)$ is the Chebychev polynomial of the second kind of degree $n$. We also explore implications of these inverse polynomial mappings, for example showing that $Sigma_pi$ is the closure of its interior, and contains the filled Julia sets of infinitely many $pin S$, including those of $P_m$, this partially answering a conjecture of the second author.
82 - S. Kupin 2008
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
144 - Nurulla Azamov 2021
Given a self-adjoint operator $H_0$ and a relatively $H_0$-compact self-adjoint operator $V,$ the functions $r_j(z) = - sigma_j^{-1}(z),$ where $sigma_j(z)$ are eigenvalues of the compact operator $(H_0-z)^{-1}V,$ bear a lot of important information about the pair $H_0$ and $V.$ We call them coupling resonances. In case of rank one (and positive) perturbation $V,$ there is only one coupling resonance function, which is a Herglotz function. This case has been studied in depth in the literature, and appears in different situations, such as Sturm-Liouville theory, random Schrodinger operators, harnomic and spectral analyses, etc. The general case is complicated by the fact that the resonance functions are no longer single valued holomorphic functions, and potentially can have quite an erratic behaviour, typical for infinitely-valued holomorphic functions. Of special interest are those coupling resonance functions $r_z$ which approach a real number $r_{lambda+i0}$ from the interval $[0,1]$ as the spectral parameter $z=lambda+iy$ approaches a point $lambda$ of the essential spectrum, since they are responsible for spectral flow through $lambda$ inside essential spectrum when $H_0$ gets deformed to $H_1 = H_0+V$ via the path $H_0 + rV, r in [0,1].$ In this paper it is shown that if the pair $H_0,$ $V$ satisfies the limiting absorption principle, then the coupling resonance functions are well-behaved near the essential spectrum in the following sense. Let $I$ be an open interval inside the essential spectrum of $H_0$ and $epsilon>0.$ Then there exists a compact subset~$K$ of~$I$ such that $| I setminus K | < epsilon,$ and $K$ has a non-tangential neighbourhood in the upper complex half-plane, such that any coupling resonance function is either single-valued in the neighbourhood, or does not take a real value in the interval $[0,1].$
155 - Nurulla Azamov 2014
The spectral flow is a classical notion of functional analysis and differential geometry which was given different interpretations as Fredholm index, Witten index, and Maslov index. The classical theory treats spectral flow outside the essential spec trum. Inside essential spectrum, the spectral shift function could be considered as a proper analogue of spectral flow, but unlike the spectral flow, the spectral shift function is not an integer-valued function. In this paper it is shown that the notion of spectral flow admits a natural integer-valued extension for a.e. value of the spectral parameter inside essential spectrum too and appropriate theory is developed. The definition of spectral flow inside essential spectrum given in this paper applies to the classical spectral flow and thus gives one more new alternative definition of it.
458 - Georgi Raikov 2015
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav iour of the discrete spectrum of $H_{eta W}$ near the origin, and due to the irregular decay of $eta W$, we encounter some non semiclassical phenomena. In particular, $H_{eta W}$ has less eigenvalues than suggested by the semiclassical intuition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا