ﻻ يوجد ملخص باللغة العربية
Sparse coding is a proven principle for learning compact representations of images. However, sparse coding by itself often leads to very redundant dictionaries. With images, this often takes the form of similar edge detectors which are replicated many times at various positions, scales and orientations. An immediate consequence of this observation is that the estimation of the dictionary components is not statistically efficient. We propose a factored model in which factors of variation (e.g. position, scale and orientation) are untangled from the underlying Gabor-like filters. There is so much redundancy in sparse codes for natural images that our model requires only a single dictionary element (a Gabor-like edge detector) to outperform standard sparse coding. Our model scales naturally to arbitrary-sized images while achieving much greater statistical efficiency during learning. We validate this claim with a number of experiments showing, in part, superior compression of out-of-sample data using a sparse coding dictionary learned with only a single image.
Speech-to-text alignment is a critical component of neural textto-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to ge
Neural network quantization methods often involve simulating the quantization process during training, making the trained model highly dependent on the target bit-width and precise way quantization is performed. Robust quantization offers an alternat
Deep learning-based video manipulation methods have become widely accessible to the masses. With little to no effort, people can quickly learn how to generate deepfake (DF) videos. While deep learning-based detection methods have been proposed to ide
We study the link between baryons and dark matter in 240 galaxies with spatially resolved kinematic data. Our sample spans 9 dex in stellar mass and includes all morphological types. We consider (i) 153 late-type galaxies (LTGs; spirals and irregular
The field of few-shot learning has made remarkable strides in developing powerful models that can operate in the small data regime. Nearly all of these methods assume every unlabeled instance encountered will belong to a handful of known classes for