ﻻ يوجد ملخص باللغة العربية
Using a mass-selected ($M_{star} ge 10^{11} M_{odot}$) sample of 198 galaxies at 0 < z < 3.0 with HST/NICMOS $H_{160}$-band images from the COSMOS survey, we find evidence for the evolution of the pair fraction above z ~ 2, an epoch in which massive galaxies are believed to undergo significant structural and mass evolution. We observe that the pair fraction of massive galaxies is 0.15 pm 0.08 at 1.7 < z < 3.0, where galaxy pairs are defined as massive galaxies having a companion of flux ratio from 1:1 to 1:4 within a projected separation of 30 kpc. This is slightly lower, but still consistent with the pair fraction measured previously in other studies, and the merger fraction predicted in halo-occupation modelling. The redshift evolution of the pair fraction is described by a power law F(z) = (0.07 pm 0.04) * (1+z) ^ (0.6 pm 0.5). The merger rate is consistent with no redshift evolution, however it is difficult to constrain due to the limited sample size and the high uncertainties in the merging timescale. Based on the merger rate calculation, we estimate that a massive galaxy undergoes on average 1.1 pm 0.5 major merger from z = 3 to 0. The observed merger fraction is sufficient to explain the number density evolution of massive galaxies, but insufficient to explain the size evolution. This is a hint that mechanism(s) other than major merging may be required to increase the sizes of the massive, compact quiescent galaxies from z ~ 2 to 0.
We study the structural evolution of massive galaxies by linking progenitors and descendants at a constant cumulative number density of n_c=1.4x10^{-4} Mpc^{-3} to z~3. Structural parameters were measured by fitting Sersic profiles to high resolution
We measure the merger fraction of massive galaxies using the UltraVISTA/COSMOS $Ks$-band selected catalog, complemented with the deeper, higher resolution 3DHST+CANDELS catalog selected in the HST/WFC3 $H$-band, presenting the largest mass-complete p
[Abridged] Using public data from the NMBS and CANDELS surveys, we study the population of massive galaxies at z>3 to identify the potential progenitors of z~2 compact, massive, quiescent (CMQ) galaxies, furthering our understanding of the evolution
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while s
We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 on the Hubble Space Telescope. We have used 3D-HST spectra to measure redshifts and Halpha equivalent widths for a stellar mass-li