ترغب بنشر مسار تعليمي؟ اضغط هنا

First Results from the 3D-HST Survey: The Striking Diversity of Massive Galaxies at z>1

72   0   0.0 ( 0 )
 نشر من قبل Pieter van Dokkum
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 on the Hubble Space Telescope. We have used 3D-HST spectra to measure redshifts and Halpha equivalent widths for a stellar mass-limited sample of 34 galaxies at 1<z<1.5 with M(stellar)>10^11 M(sun) in the COSMOS, GOODS, and AEGIS fields. We find that a substantial fraction of massive galaxies at this epoch are forming stars at a high rate: the fraction of galaxies with Halpha equivalent widths >10 A is 59%, compared to 10% among SDSS galaxies of similar masses at z=0.1. Galaxies with weak Halpha emission show absorption lines typical of 2-4 Gyr old stellar populations. The structural parameters of the galaxies, derived from the associated WFC3 F140W imaging data, correlate with the presence of Halpha: quiescent galaxies are compact with high Sersic index and high inferred velocity dispersion, whereas star-forming galaxies are typically large two-armed spiral galaxies, with low Sersic index. Some of these star forming galaxies might be progenitors of the most massive S0 and Sa galaxies. Our results challenge the idea that galaxies at fixed mass form a homogeneous population with small scatter in their properties. Instead we find that massive galaxies form a highly diverse population at z>1, in marked contrast to the local Universe.

قيم البحث

اقرأ أيضاً

The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on HST it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Halpha emission for a sample of 54 strongly star-forming galaxies at z~1 in the 3D-HST Treasury survey. By stacking the Halpha emission we find that star formation occurred in approximately exponential distributions at z~1, with median Sersic index of n=1.0+-0.2. The stacks are elongated with median axis ratios of b/a=0.58+-0.09 in Halpha, consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination-corrected velocities of 90 to 330 km/s. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z~1 generally occurred in disks. The disks appear to be scaled-up
We constrain the internal dynamics of a stack of 10 clusters from the GCLASS survey at 0.87<z<1.34. We determine the stack cluster mass profile M(r) using the MAMPOSSt algorithm of Mamon et al., the velocity anisotropy profile beta(r) from the invers ion of the Jeans equation, and the pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The total mass distribution has a concentration c=r200/r-2=4.0-0.6+1.0, in agreement with theoretical expectations, and is less concentrated than the cluster stellar-mass distribution. The stack cluster beta(r) is similar for passive and star-forming galaxies and indicates isotropic galaxy orbits near the cluster center and increasingly radially elongated with increasing cluster-centric distance. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Combined with results obtained for lower-z clusters we determine the dynamical evolution of galaxy clusters, and compare it with theoretical predictions. We discuss possible physical mechanisms responsible for the differential evolution of total and stellar mass concentrations, and of passive and star-forming galaxy orbits [abridged].
We analyze the star-forming and structural properties of 45 massive (log(M/Msun)>10) compact star-forming galaxies (SFGs) at 2<z<3 to explore whether they are progenitors of compact quiescent galaxies at z~2. The optical/NIR and far-IR Spitzer/Hersch el colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray bright AGN. In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally-concentrated light profiles and spheroidal morphologies similar to quiescent galaxies, and are thus strikingly different from other SFGs. Most compact SFGs lie either within the SFR-M main sequence (65%) or below (30%), on the expected evolutionary path towards quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (tau) star formation histories (SFHs) or physically-motivated SFHs drawn from semi-analytic models (SAMs). SAMs predict longer formation timescales and older ages ~2 Gyr, which are nearly twice as old as the estimates of the tau models. While both models yield good SED fits, SAM SFHs better match the observed slope and zero point of the SFR-M main sequence. Some low-mass compact SFGs (log(M/Msun)=10-10.6) have younger ages but lower sSFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities are both able to shrink galaxies, but disk instabilities are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.
We present new accurate measurements of the physical properties of a statistically significant sample of 103 galaxies at z~2 using near-infrared spectroscopy taken as part of the 3D-HST survey. We derive redshifts, metallicities and star formation ra tes (SFRs) from the [OII], [OIII] and Hbeta nebular emission lines and exploit the multi-wavelength photometry available in CANDELS to measure stellar masses. We find the mass-metallicity relation (MZR) derived from our data to have the same trend as previous determinations in the range 0<z<3, with lower mass galaxies having lower metallicities. However we find an offset in the relation compared to the previous determination of the z~2 MZR by Erb et al. 2006b, who measure metallicities using the [NII]/Halpha ratio, with metallicities lower at a given mass. Incorporating our SFR information we find that our galaxies are offset from the Fundamental Metallicity Relation (FMR) by ~0.3 dex. We investigate the photoionization conditions and find that our galaxies are consistent with the elevated ionization parameter previously reported in high-redshift galaxies. Using the BPT diagram we argue that, if this is the case, metallicity indicators based on [NII] and Halpha may not be consistent with the ones obtained via oxygen lines and Hbeta. Using a recent determination of the theoretical evolution of the star forming sequence in the BPT diagram we convert our measured [OIII]/Hbeta line ratios to [NII]/Halpha ratios. From the [NII]/Halpha ratio we infer systematically higher metallicities in better agreement with the FMR. Our results thus suggest the evolution of the FMR previously reported at z~2-3 may be an artifact of the differential evolution in metallicity indicators, and caution against using locally calibrated metallicity relations at high redshift which do not account for evolution in the physical conditions of star-forming regions.
We investigate the build-up of galaxies at z~1 using maps of Halpha and stellar continuum emission for a sample of 57 galaxies with rest-frame Halpha equivalent widths >100 Angstroms in the 3D-HST grism survey. We find that the Halpha emission broadl y follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Halpha effective radius r_e(Halpha) is 4.2+-0.1 kpc but the sizes span a large range, from compact objects with r_e(Halpha) ~ 1.0 kpc to extended disks with r_e(Halpha) ~ 15 kpc. Comparing Halpha sizes to continuum sizes, we find <r_e(Halpha)/r_e(R)>=1.3+-0.1 for the full sample. That is, star formation, as traced by Halpha, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Halpha sizes, we derive star formation rate surface densities. We find that they range from ~0.05 Msun yr^{-1} kpc^{-2} for the largest galaxies to ~5 Msun yr^{-1} kpc^{-2} for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z~1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times < 500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا