ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic phase transitions in Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ epitaxial thin films revealed by resonant soft x-ray scattering

232   0   0.0 ( 0 )
 نشر من قبل Hiroki Wadati
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the study of magnetic and orbital order in Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ epitaxial thin films grown on (LaAlO$_3$)$_{0.3}$-(SrAl$_{0.5}$Ta$_{0.5}$O$_3$)$_{0.7}$ (LSAT) (011)$_c$. In a new experimental approach, the polarization and energy dependence of resonant soft x-ray scattering are used to reveal significant modifications of the magnetic order in the film as compared to the bulk, namely (i) a different magnetic ordering wave vector, (ii) a different magnetic easy axis and (iii) an additional magnetic reordering transition at low temperatures. These observations indicate a strong impact of the epitaxial strain on the spin order, which is mediated by the orbital degrees of freedom and which provides a promising route to tune the magnetic properties of manganite films. Our results further demonstrate that resonant soft x-ray scattering is a very suitable technique to study the magnetism in thin films, to which neutron scattering cannot easily be applied due to the small sample volume.



قيم البحث

اقرأ أيضاً

We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.
Thin films of Pr0.5Ca0.5MnO3 manganites exhibiting charge/orbital-ordered properties with colossal magnetoresistance have been synthesized by the pulsed laser deposition technique on both (100)-SrTiO3 and (100)-LaAlO3 substrates. The effects of curre nt-induced metallic-behavior of the films are investigated as a function of the temperature and the magnetic field. Calculations based on a heat transfer model across the substrate, and our resistivity measurements reveal effects of Joule heating on charge transport over certain ranges of temperatures and magnetic fields. Our results also indicate that a nonlinear conduction, which cannot be explained by homogeneous Joule heating of the film, is observed when the material is less resistive (10-2 W.cm). The origin of this behavior is explained with a model based on local thermal instabilities associated with phase-separation mechanism and a change in the long range charge-ordered state.
We report low temperature specific heat measurements of Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ ($0.3leq x leq 0.5$) and La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ with and without applied magnetic field. An excess specific heat, $C^{prime}(T)$, of non-magnetic origin associ ated with charge ordering is found for all the samples. A magnetic field sufficient to induce the transition from the charge-ordered state to the ferromagnetic metallic state does not completely remove the $C^{prime}$ contribution. This suggests that the charge ordering is not completely destroyed by a melting magnetic field. In addition, the specific heat of the Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ compounds exhibit a large contribution linear in temperature ($gamma T$) originating from magnetic and charge disorder.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
We report the effect of field, temperature and thermal history on the time dependence in resistivity and magnetization in the phase separated state of Al doped Pr$_{0.5}$Ca$_{0.5}$MnO$_3$. The rate of time dependence in resistivity is much higher tha n that of magnetization and it exhibits a different cooling field dependence due to percolation effects. Our analysis show that the time dependence in physical properties depends on the phase transition dynamics which can be effectively tuned by variation of temperature, cooling field and metastable phase fraction. The phase transition dynamics can be broadly divided into the arrested and un-arrested regimes, and in the arrested regime, this dynamics is mainly determined by time taken in the growth of critical nuclei. An increase in cooling field and/or temperature shifts this dynamics from arrested to un-arrested regime, and in this regime, this dynamics is determined by thermodynamically allowed rate of formation of critical nuclei which in turn depends on the cooling field and available metastable phase fraction. At a given temperature, a decrease in metastable phase fraction shifts the crossover from arrested to un-arrested regimes towards lower cooling field. It is rather significant that inspite of the metastable phase fraction calculated from resistivity being somewhat off from that of magnetization, their cooling field dependence exhibits a striking similarity which indicate that the dynamics in arrested and un-arrested regimes are so different that it comes out vividly provided that the measurements are done around percolation threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا