ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity Analysis of Macroecology

64   0   0.0 ( 0 )
 نشر من قبل Nick Watkins
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a full similarity analysis of an idealized ecosystem using Buckinghams $Pi$ theorem to obtain dimensionless similarity parameters given that some (non- unique) method exists that can differentiate different functional groups of individuals within an ecosystem. We then obtain the relationship between the similarity parameters under the assumptions of (i) that the ecosystem is in a dynamically balanced steady state and (ii) that these functional groups are connected to each other by the flow of resource. The expression that we obtain relates the level of complexity that the ecosystem can support to intrinsic macroscopic variables such as density, diversity and characteristic length scales for foraging or dispersal, and extrinsic macroscopic variables such as habitat size and the rate of supply of resource. This expression relates these macroscopic variables to each other, generating commonly observed macroecological patterns; these broad trends simply reflect the similarity property of ecosystems. We thus find that details of the ecosystem function are not required to obtain these broad macroecological patterns this may explain why they are ubiquitous. Departures from our relationship may indicate that the ecosystem is in a state of rapid change, i.e., abundance or diversity explosion or collapse. Our result provides normalised variables that can be used to isolate the trend in one ecosystem variable from another, providing a new method for isolating macroecological patterns in data. A dimensionless control parameter for ecosystem complexity emerges from our analysis and this will be a control parameter in dynamical models for ecosystems based on energy flow and conservation and will order the emergent behaviour of these models.


قيم البحث

اقرأ أيضاً

In cellular reprogramming, almost all epigenetic memories of differentiated cells are erased by the overexpression of few genes, regaining pluripotency, potentiality for differentiation. Considering the interplay between oscillatory gene expression a nd slower epigenetic modifications, such reprogramming is perceived as an unintuitive, global attraction to the unstable manifold of a saddle, which represents pluripotency. The universality of this scheme is confirmed by the repressilator model, and by gene regulatory networks randomly generated and those extracted from embryonic stem cells.
Neural avalanches are collective firings of neurons that exhibit emergent scale-free behavior. Understanding the nature and distribution of these avalanches is an important element in understanding how the brain functions. We study a model of neural avalanches for which the dynamics are governed by neutral theory. The neural avalanches are defined using causal connections between the firing neurons. We analyze the scaling of causal neural avalanches as the critical point is approached from the absorbing phase. By using cluster analysis tools from percolation theory, we characterize the critical properties of the neural avalanches. We identify the tuning parameters consistent with experiments. The scaling hypothesis provides a unified explanation of the power laws which characterize the critical point. The critical exponents characterizing the avalanche distributions and divergence of the response functions are consistent with the predictions of the scaling hypothesis. We use a universal scaling function for the avalanche profile to find that the firing rates for avalanches of different durations show data collapse after appropriate rescaling. We also find data collapse for the avalanche distribution functions, which is stronger evidence of criticality than just the existence of power laws. Critical slowing-down and power law relaxation of avalanches is observed as the system is tuned to its critical point. We discuss how our results motivate future empirical studies of criticality in the brain.
104 - Guy Katriel 2018
We explore simple models aimed at the study of social contagion, in which contagion proceeds through two stages. When coupled with demographic turnover, we show that two-stage contagion leads to nonlinear phenomena which are not present in the basic `classical models of mathematical epidemiology. These include: bistability, critical transitions, endogenous oscillations, and excitability, suggesting that contagion models with stages could account for some aspects of the complex dynamics encountered in social life. These phenomena, and the bifurcations involved, are studied by a combination of analytical and numerical means.
In this report, we present an unsupervised machine learning method for determining groups of molecular systems according to similarity in their dynamics or structures using Wards minimum variance objective function. We first apply the minimum varianc e clustering to a set of simulated tripeptides using the information theoretic Jensen-Shannon divergence between Markovian transition matrices in order to gain insight into how point mutations affect protein dynamics. Then, we extend the method to partition two chemoinformatic datasets according to structural similarity to motivate a train/validation/test split for supervised learning that avoids overfitting.
89 - Shogo Mizutaka 2018
In this paper, a simple dynamical model in which fractal networks are formed by self-organized critical (SOC) dynamics is proposed; the proposed model consists of growth and collapse processes. It has been shown that SOC dynamics are realized by the combined processes in the model. Thus, the distributions of the cluster size and collapse size follow a power-law function in the stationary state. Moreover, through SOC dynamics, the networks become fractal in nature. The criticality of SOC dynamics is the same as the universality class of mean-field theory. The model explains the possibility that the fractal nature in complex networks emerges by SOC dynamics in a manner similar to the case with fractal objects embedded in a Euclidean space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا