ترغب بنشر مسار تعليمي؟ اضغط هنا

What determines the density structure of molecular clouds ? A case study of Orion B with Herschel

114   0   0.0 ( 0 )
 نشر من قبل Nicola Schneider
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Schneider




اسأل ChatGPT حول البحث

A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.



قيم البحث

اقرأ أيضاً

Molecular hydrogen being unobservable in cold molecular clouds, the column density measurements of molecular gas currently rely either on dust emission observation in the far-IR or on star counting. (Sub-)millimeter observations of numerous trace mol ecules are effective from ground based telescopes, but the relationships between the emission of one molecular line and the H2 column density (NH2) is non-linear and sensitive to excitation conditions, optical depths, abundance variations due to the underlying physico-chemistry. We aim to use multi-molecule line emission to infer NH2 from radio observations. We propose a data-driven approach to determine NH2 from radio molecular line observations. We use supervised machine learning methods (Random Forests) on wide-field hyperspectral IRAM-30m observations of the Orion B molecular cloud to train a predictor of NH2, using a limited set of molecular lines as input, and the Herschel-based dust-derived NH2 as ground truth output. For conditions similar to the Orion B molecular cloud, we obtain predictions of NH2 within a typical factor of 1.2 from the Herschel-based estimates. An analysis of the contributions of the different lines to the predictions show that the most important lines are $^{13}$CO(1-0), $^{12}$CO(1-0), C$^{18}$O(1-0), and HCO$^+$(1-0). A detailed analysis distinguishing between diffuse, translucent, filamentary, and dense core conditions show that the importance of these four lines depends on the regime, and that it is recommended to add the N$_2$H$^+$(1-0) and CH$_3$OH(20-10) lines for the prediction of NH2 in dense core conditions. This article opens a promising avenue to directly infer important physical parameters from the molecular line emission in the millimeter domain. The next step will be to try to infer several parameters simultaneously (e.g., NH2 and far-UV illumination field) to further test the method. [Abridged]
We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using HIFI on the Hersc hel Space Observatory, having velocities of 11 km s-1 to 12 km s-1 and widths of 3 km s-1. The beam-averaged column density is N(O2) = 6.5times1016 cm-2, and assuming that the source has an equal beam filling factor for all transitions (beam widths 44, 28, and 19), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O2 relative to H2 is 0.3 - 7.3times10-6. The unusual velocity suggests an association with a ~ 5 diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is ~ 10 Modot and the dust temperature is geq 150 K. Our preferred explanation of the enhanced O2 abundance is that dust grains in this region are sufficiently warm (T geq 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O2. For this small source, the line ratios require a temperature geq 180 K. The inferred O2 column density simeq 5times1018 cm-2 can be produced in Peak A, having N(H2) simeq 4times1024 cm-2. An alternative mechanism is a low-velocity (10 to 15 km s-1) C-shock, which can produce N(O2) up to 1017 cm-2.
We use the 2MASS Second Incremental Release Point Source Catalog to investigate the spatial distribution of young stars in the Perseus, Orion A, Orion B, and MonR2 molecular clouds. After subtracting a semi-empirical model of the field star contamina tion from the observed star counts, stellar surface density maps are used to identify compact clusters and any stellar population found more uniformly distributed over the molecular cloud. Each cloud contains between 2 to 7 clusters, with at least half of the cluster population found in a single, rich cluster. In addition, a distributed stellar population is inferred in the Orion A and MonR2 molecular clouds within the uncertainties of the field star subtraction with a surface density between 0.013 - 0.083 arcmin**-2. The fraction of the total stellar population contained in clusters for the nominal extinction model ranges from ~50-100% if the distributed population is relatively young (< 10 Myr), to ~25%-70% if it is relatively old (~100 Myr). The relatively high fraction of stars contained in clusters regardless of the age of the distributed population, in conjunction with the young ages generally inferred for embedded clusters in nearby molecular clouds, indicates that a substantial fraction of the total stellar population in these regions has formed within the past few million years in dense clusters. This suggests that either the star formation rate in each these clouds has recently peaked if one assumes clouds have ages > 10 Myr, or molecular clouds are younger than typically thought if one assumes that the star formation rate has been approximately constant in time.
96 - A. Roy , Ph. Andre , P. Palmeirim 2013
Utilizing multi-wavelength dust emission maps acquired with $Herschel$, we reconstruct local volume density and dust temperature profiles for the prestellar cores B68 and L1689B using inverse-Abel transform based technique. We present intrinsic radia l dust temperature profiles of starless cores directly from dust continuum emission maps disentangling the effect of temperature variations along the line of sight which was previously limited to the radiative transfer calculations. The reconstructed dust temperature profiles show a significant drop in core center, a flat inner part, and a rising outward trend until the background cloud temperature is reached. The central beam-averaged dust temperatures obtained for B68 and L1689B are 9.3 $pm$ 0.5 K and 9.8 $pm$0.5 K, respectively, which are lower than the temperatures of 11.3 K and 11.6 K obtained from direct SED fitting. The best mass estimates derived by integrating the volume density profiles of B68 and L1689B are 1.6 M_sol and 11 M_sol, respectively. Comparing our results for B68 with the near-infrared extinction studies, we find that the dust opacity law adopted by the HGBS project, $kappa_{lambda} =0.1(lambda/300 mu m)^{-2}$, agrees to within 50% with the dust extinction constraints
191 - D. Froebrich 2010
The formation of stars is inextricably linked to the structure of their parental molecular clouds. Here we take a number of nearby giant molecular clouds (GMCs) and analyse their column density and mass distributions. This investigation is based on f our new all-sky median colour excess extinction maps determined from 2MASS. The four maps span a range of spatial resolution of a factor of eight. This allows us to determine cloud properties at a common spatial scale of 0.1pc, as well as to study the scale dependence of the cloud properties. We find that the low column density and turbulence dominated part of the clouds can be well fit by a log-normal distribution. However, above a universal extinction threshold of 6.0 pm 1.5mag A_V there is excess material compared to the log-normal distribution in all investigated clouds. This material represents the part of the cloud that is currently involved in star formation, and thus dominated by gravity. Its contribution to the total mass of the clouds ranges over two orders of magnitude from 0.1 to 10%. This implies that our clouds sample various stages in the evolution of GMCs. Furthermore, we find that the column density and mass distributions are extremely similar between clouds if we analyse only the high extinction material. On the other hand, there are significant differences between the distributions if only the low extinction, turbulence dominated regions are considered. This shows that the turbulent properties differ between clouds depending on their environment. However, no significant influence on the predominant mode of star formation (clustered or isolated) could be found. Furthermore, the fraction of the cloud actively involved in star formation is only governed by gravity, with the column density and mass distributions not significantly altered by local feedback processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا