ﻻ يوجد ملخص باللغة العربية
In condensed matter physics gauge symmetries other than the U(1) of electromagnetism are of an emergent nature. Two emergence mechanisms for gauge symmetry are well established: the way these arise in Kramers-Wannier type local-global dualities, and as a way to encode local constraints encountered in (doped) Mott insulators. We demonstrate that these gauge structures are closely related, and appear as counterparts in either the canonical or field-theoretical language. The restoration of symmetry in a disorder phase transition is due to having the original local variables subjected to a coherent superposition of all possible topological defect configurations, with the effect that correlation functions are no longer well-defined. This is completely equivalent to assigning gauge freedom to those variables. Two cases are considered explicitly: the well-known vortex duality in bosonic Mott insulators serves to illustrate the principle. The acquired wisdoms are then applied to the less familiar context of dualities in quantum elasticity, where we elucidate the relation between the quantum nematic and linearized gravity. We reflect on some deeper implications for the emergence of gauge symmetry in general.
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and
In the context of cosmological perturbation theory, we derive the second order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equati
We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, Gauss law effectively induces a dynamics which c
In this paper we investigate a particular ghost-free bimetric theory that exhibits the partially massless (PM) symmetry at quadratic order. At this order the global SO(1,4) symmetry of the theory is enhanced to SO(1,5). We show that this global symme