ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body localization dynamics from gauge invariance

57   0   0.0 ( 0 )
 نشر من قبل Marcello Dalmonte
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, Gauss law effectively induces a dynamics which can be described as a disorder average over gauge super-selection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow entanglement growth are present in a broad regime of parameters - in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ions experiments realizing dynamical gauge fields, and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.



قيم البحث

اقرأ أيضاً

We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, w e compute the one-particle density matrix (OPDM) in many-body eigenstates. We show that the natural orbitals (the eigenstates of the OPDM) are extended in the ergodic phase and real-space localized when one enters into the MBL phase. Furthermore, the distributions of occupations of the natural orbitals can be used as measures of Fock-space localization in the respective basis. Consistent with previous studies, we observe signatures of a transition from the ergodic to the many-body localized (MBL) regime when increasing the disorder strength. We further demonstrate that Fock-space localization, albeit weaker, is also evidently present in the distribution of the physical densities in the MBL regime, both for soft- and hardcore bosons. Moreover, the full distribution of the densities of the physical particles provides a one-particle measure for the detection of the ergodic-MBL transition which could be directly accessed in experiments with ultra-cold gases.
We analyze the localization properties of the disordered Hubbard model in the presence of a synthetic magnetic field. An analysis of level spacing ratio shows a clear transition from ergodic to many-body localized phase. The transition shifts to larg er disorder strengths with increasing magnetic flux. Study of dynamics of local correlations and entanglement entropy indicates that charge excitations remain localized whereas spin degree of freedom gets delocalized in the presence of the synthetic flux. This residual ergodicity is enhanced by the presence of the magnetic field with dynamical observables suggesting incomplete localization at large disorder strengths. Furthermore, we examine the effect of quantum statistics on the local correlations and show that the long-time spin oscillations of a hard-core boson system are destroyed as opposed to the fermionic case.
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version th e energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in the angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Linger model, the dynamical localization can persist.
Many-body localized (MBL) systems do not approach thermal equilibrium under their intrinsic dynamics; MBL and conventional thermalizing systems form distinct dynamical phases of matter, separated by a phase transition at which equilibrium statistical mechanics breaks down. True MBL is known to occur only under certain stringent conditions for perfectly isolated one-dimensional systems, with Hamiltonians that have strictly short-range interactions and lack any continuous non-Abelian symmetries. However, in practice, even systems that are not strictly MBL can be nearly MBL, with equilibration rates that are far slower than their other intrinsic timescales; thus, anomalously slow relaxation occurs in a much broader class of systems than strict MBL. In this review we address transport and dynamics in such nearly-MBL systems from a unified perspective. Our discussion covers various classes of such systems: (i) disordered and quasiperiodic systems on the thermal side of the MBL-thermal transition; (ii) systems that are strongly disordered, but obstructed from localizing because of symmetry, interaction range, or dimensionality; (iii) multiple-component systems, in which some components would in isolation be MBL but others are not; and finally (iv) driven systems whose dynamics lead to exponentially slow rates of heating to infinite temperature. A theme common to many of these problems is that they can be understood in terms of approximately localized degrees of freedom coupled to a heat bath (or baths) consisting of thermal degrees of freedom; however, this putative bath is itself nontrivial, being either small or very slowly relaxing. We discuss anomalous transport, diverging relaxation times, and other signatures of the proximity to MBL in these systems. We also survey recent theoretical and numerical methods that have been applied to study dynamics on either side of the MBL transition.
At long times residual couplings to the environment become relevant even in the most isolated experiments, creating a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a c old-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the `non-local nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا