ﻻ يوجد ملخص باللغة العربية
The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970s, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied to folding nor have the points of similarity with optics been identified or exploited. A putative underlying physical link between caustics and folding is a torsion wave of non-constant wave speed, propagating on the dihedral angles and $Psi$ found in an analytical model of the molecule. Regardless of whether we have correctly identified an underlying link, the analogy between caustic formation and folding is strong and the parallels (and differences) in the physics are useful.
A geometric analysis of protein folding, which complements many of the models in the literature, is presented. We examine the process from unfolded strand to the point where the strand becomes self-interacting. A central question is how it is possibl
Water plays a fundamental role in protein stability. However, the effect of the properties of water on the behaviour of proteins is only partially understood. Several theories have been proposed to give insight into the mechanisms of cold and pressur
This is a sequel to the paper [K. Fujii : SIGMA {bf 7} (2011), 022, 12 pages]. In this paper we treat a non-Gaussian integral based on a quartic polynomial and make a mathematical experiment by use of MATHEMATICA whether the integral is written in terms of its discriminant or not.
In spite of decades of research, much remains to be discovered about folding: the detailed structure of the initial (unfolded) state, vestigial folding instructions remaining only in the unfolded state, the interaction of the molecule with the solven
A brief summary of recent developments in mathematical diffraction theory is given. Particular emphasis is placed on systems with aperiodic order and continuous spectral components. We restrict ourselves to some key results and refer to the literature for further details.