ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress in mathematical diffraction

97   0   0.0 ( 0 )
 نشر من قبل Michael Baake
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Uwe Grimm




اسأل ChatGPT حول البحث

A brief summary of recent developments in mathematical diffraction theory is given. Particular emphasis is placed on systems with aperiodic order and continuous spectral components. We restrict ourselves to some key results and refer to the literature for further details.



قيم البحث

اقرأ أيضاً

82 - Junshan Lin , Hai Zhang 2021
This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence and stability of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, the associated Zak phase (or Berry phase) may not be quantized. We investigate the existence of an interface mode which is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values $0, pi$. We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm-Liouville operators. The methods and results can be extended to general topological Sturm-Liouville systems in one dimension.
This is a sequel to the paper [K. Fujii : SIGMA {bf 7} (2011), 022, 12 pages]. In this paper we treat a non-Gaussian integral based on a quartic polynomial and make a mathematical experiment by use of MATHEMATICA whether the integral is written in terms of its discriminant or not.
We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection wit h the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.
135 - Walter Simmons 2011
The energy for protein folding arises from multiple sources and is not large in total. In spite of the many specific successes of energy landscape and other approaches, there still seems to be some missing guiding factor that explains how energy from diverse small sources can drive a complex molecule to a unique state. We explore the possibility that the missing factor is in the geometry. A comparison of folding with other physical phenomena, together with analytic modeling of a molecule, led us to analyze the physics of optical caustic formation and of folding behavior side-by-side. The physics of folding and caustics is ostensibly very different but there are several strong parallels. This comparison emphasizes the mathematical similarity and also identifies differences. Since the 1970s, the physics of optical caustics has been developed to a very high degree of mathematical sophistication using catastrophe theory. That kind of quantitative application of catastrophe theory has not previously been applied to folding nor have the points of similarity with optics been identified or exploited. A putative underlying physical link between caustics and folding is a torsion wave of non-constant wave speed, propagating on the dihedral angles and $Psi$ found in an analytical model of the molecule. Regardless of whether we have correctly identified an underlying link, the analogy between caustic formation and folding is strong and the parallels (and differences) in the physics are useful.
143 - Jianping Li , Shouhong Wang 2007
In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related mathematical and computational issues, 2) climate variability, predictability and successive bifurcation, and 3) a new dynamical systems theory and its applications to GFD and climate dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا