ﻻ يوجد ملخص باللغة العربية
We use multifractal finite-size scaling to perform a high-precision numerical study of the critical properties of the Anderson localization-delocalization transition in the unitary symmetry class, considering the Anderson model including a random magnetic flux. We demonstrate the scale invariance of the distribution of wavefunction intensities at the critical point and study its behavior across the transition. Our analysis, involving more than $4times10^6$ independently generated wavefunctions of system sizes up to $L^3=150^3$, yields accurate estimates for the critical exponent of the localization length, $ u=1.446 (1.440,1.452)$, the critical value of the disorder strength and the multifractal exponents.
We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simula
We propose a generalization of multifractal analysis that is applicable to the critical regime of the Anderson localization-delocalization transition. The approach reveals that the behavior of the probability distribution of wavefunction amplitudes i
This chapter describes the progress made during the past three decades in the finite size scaling analysis of the critical phenomena of the Anderson transition. The scaling theory of localisation and the Anderson model of localisation are briefly ske
The probability density function (PDF) for critical wavefunction amplitudes is studied in the three-dimensional Anderson model. We present a formal expression between the PDF and the multifractal spectrum f(alpha) in which the role of finite-size cor
We study the multifractal analysis (MFA) of electronic wavefunctions at the localisation-delocalisation transition in the 3D Anderson model for very large system sizes up to $240^3$. The singularity spectrum $f(alpha)$ is numerically obtained using t