ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron pockets and pseudogap Dirac point in underdoped cuprate superconductors

138   0   0.0 ( 0 )
 نشر من قبل Elisabeth Nicol
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a model of the pseudogap specifically designed to describe the underdoped cuprates and which exhibits particle-hole asymmetry. The presence of electron pockets, besides the usual hole pockets, leads to the appearance of new vectors beyond the usual so-called octet model in the joint density of states (JDOS), which underlies the analysis of Fourier-transform scanning tunneling spectroscopy (FT-STS) data. These new vectors are associated with distinct patterns of large amplitude in the JDOS and are expected to occur primarily at positive bias. Likewise a pseudogap Dirac point occurs at positive bias and this point can be determined either through FT-STS or through extrapolation of data from the autocorrelation function of angle-resolved photoemission spectroscopy.



قيم البحث

اقرأ أيضاً

Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features o f the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
We calculate the diffusion thermoelectric power of high-Tc cuprates using the resonating-valence-bond spin-liquid model developed by Yang, Rice and Zhang (YRZ). In this model, reconstruction of the energy-momentum dispersion results in a pseudogap in the density of states that is heavily asymmetric about the Fermi level. The subsequent asymmetry in the spectral conductivity is found to account for the large magnitude and temperature dependence of the thermopower observed in underdoped cuprates. In addition we find evidence in experimental data for electron pockets in the Fermi surface, arising from a YRZ-like reconstruction, near the onset of the pseudogap in the slightly overdoped regime.
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
We calculate scattering interference patterns for various electronic states proposed for the pseudogap regime of the cuprate superconductors. The scattering interference models all produce patterns whose wavelength changes as a function of energy, in contradiction to the energy-independent wavelength seen by scanning tunneling microscopy (STM) experiments in the pseudogap state. This suggests that the patterns seen in STM local density of states measurements are not due to scattering interference, but are rather the result of some form of ordering.
The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping $p^*$ that is material-dependent. What determines $p^*$ is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping $p_{FS}$ at which the large Fermi surface goes from hole-like to electron-like, so that $p^*$ $leq$ $p_{FS}$. We derive this result from high-magnetic-field transport measurements in La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ under pressure, which reveal a large and unexpected shift of $p^*$ with pressure, driven by a corresponding shift in $p_{FS}$. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that $p^*$ can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا