ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudogap phase of cuprate superconductors confined by Fermi surface topology

135   0   0.0 ( 0 )
 نشر من قبل Nicolas Doiron-Leyraud
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping $p^*$ that is material-dependent. What determines $p^*$ is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping $p_{FS}$ at which the large Fermi surface goes from hole-like to electron-like, so that $p^*$ $leq$ $p_{FS}$. We derive this result from high-magnetic-field transport measurements in La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ under pressure, which reveal a large and unexpected shift of $p^*$ with pressure, driven by a corresponding shift in $p_{FS}$. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that $p^*$ can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.



قيم البحث

اقرأ أيضاً

In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
158 - Yang He , Yi Yin , M. Zech 2013
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling micro scopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole doping (p) dependence of the quasiparticle interference pattern within a single Bi-based cuprate family, we observe a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting Tc. Surprisingly, this major reorganization of the systems underlying electronic structure has no effect on the smoothly evolving pseudogap.
We report in-plane resistivity ($rho$) and transverse magnetoresistance (MR) measurements in underdoped HgBa$_2$CuO$_{4+delta}$ (Hg1201). Contrary to the longstanding view that Kohlers rule is strongly violated in underdoped cuprates, we find that it is in fact satisfied in the pseudogap phase of Hg1201. The transverse MR shows a quadratic field dependence, $deltarho/rho_o=a H^{2}$, with $a(T)propto T^{-4}$. In combination with the observed $rhopropto T^2$ dependence, this is consistent with a single Fermi-liquid quasiparticle scattering rate. We show that this behavior is universal, yet typically masked in cuprates with lower structural symmetry or strong disorder effects.
Close to optimal doping, the copper oxide superconductors show strange metal behavior, suggestive of strong fluctuations associated with a quantum critical point. Such a critical point requires a line of classical phase transitions terminating at zer o temperature near optimal doping inside the superconducting dome. The underdoped region of the temperature-doping phase diagram from which superconductivity emerges is referred to as the pseudogap because evidence exists for partial gapping of the conduction electrons, but so far there is no compelling thermodynamic evidence as to whether the pseudogap is a distinct phase or a continuous evolution of physical properties on cooling. Here we report that the pseudogap in YBCO cuprate superconductors is a distinct phase, bounded by a line of phase transitions. The doping dependence of this line is such that it terminates at zero temperature inside the superconducting dome. From this we conclude that quantum criticality drives the strange metallic behavior and therefore superconductivity in the cuprates.
Recent angle resolved photoemission cite{yang-nature-08} and scanning tunneling microscopy cite{kohsaka-nature-08} measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features o f the normal state such as particle-hole asymmetry, maxima in the energy dispersion and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang textit{et al.} for the single particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا