ترغب بنشر مسار تعليمي؟ اضغط هنا

Extinction law in ultraluminous infrared galaxies at z ~ 1

428   0   0.0 ( 0 )
 نشر من قبل Kimiaki Kawara
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the multi-wavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z ~ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) galaxies. Five extinction curves, namely, the Milky Way (MW), the pseudo MW which is MW-like without the 2175 Angstrom feature, the Calzetti, and two SN dust curves, are applied to the data, by combining with various dust distributions, namely, the uniform dust screen, the clumpy dust screen, the internal dust geometry, and the composite geometry with a combination of dust screen and internal dust. Employing a minimum chi square method, we find that the foreground dust screen geometry, especially combined with the 8 - 40 M_sun SN extinction curve, provides a good approximation to the real dust geometry, whereas internal dust is only significant in 2 galaxies. The SN extinction curves, which are flatter than the others, reproduce the data of 8(67%) galaxies better. Dust masses are estimated to be in excess of ~ 10^8 M_sun. Inferred ages of the galaxies are very young, 8 of which range from 10 to 650 Myr. The SN-origin dust is the most plausible to account for the vast amount of dust masses and the flat slope of the observed extinction law. The inferred dust mass per SN ranges from 0.01 to 0.4 M_sun/SN.


قيم البحث

اقرأ أيضاً

We apply the supernova(SN) extinction curves to reproduce the observed properties of SST J1604+4304 which is a young infrared (IR) galaxy at z = 1. The SN extinction curves used in this work were obtained from models of unmixed ejecta of type II supe rnovae(SNe II) for the Salpeter initial mass function (IMF) with a mass range from 8 to 30 M_sun or 8 to 40 M_sun. The effect of dust distributions on the attenuation of starlight is investigated by performing the chi-square fitting method against various dust distributions. These are the commonly used uniform dust screen, the clumpy dust screen, and the internal dust geometry. We add to these geometries three scattering properties, namely, no-scattering, isotropic scattering, and forward-only scattering. Judging from the chi-square values, we find that the uniform screen models with any scattering property provide good approximations to the real dust geometry. Internal dust is inefficient to attenuate starlight and thus cannot be the dominant source of the extinction. We show that the SN extinction curves reproduce the data of SST J1604+4304 comparable to or better than the Calzetti extinction curve. The Milky Way extinction curve is not in satisfactory agreement with the data unless several dusty clumps are in the line of sight. This trend may be explained by the abundance of SN-origin dust in these galaxies; SN dust is the most abundant in the young IR galaxy at z = 1, abundant in local starbursts, and less abundant in the Galaxy. If dust in SST J1604+4304 is dominated by SN dust, the dust production rate is about 0.1 M_sun per SN.
100 - K. Kawara , S. Oyabu , Y. Matsuoka 2009
We present the detailed optical to far-infrared observations of SST J1604+4304, an ULIRG at z = 1.135. Analyzing the stellar absorption lines, namely, the CaII H & K and Balmer H lines in the optical spectrum, we derive the upper limits of an age for the stellar population. Given this constraint, the minimum {chi}^2 method is used to fit the stellar population models to the observed SED from 0.44 to 5.8um. We find the following properties. The stellar population has an age 40 - 200 Myr with a metallicity 2.5 Z_{sun}. The starlight is reddened by E(B-V) = 0.8. The reddening is caused by the foreground dust screen, indicating that dust is depleted in the starburst site and the starburst site is surrounded by a dust shell. The infrared (8-1000um) luminosity is L_{ir} = 1.78 +/- 0.63 * 10^{12} L_{sun}. This is two times greater than that expected from the observed starlight, suggesting either that 1/2 of the starburst site is completely obscured at UV-optical wavelengths, or that 1/2 of L_{ir} comes from AGN emission. The inferred dust mass is 2.0 +/- 1.0 * 10^8 M_{sun}. This is sufficient to form a shell surrounding the galaxy with an optical depth E(B-V) = 0.8. From our best stellar population model - an instantaneous starburst with an age 40 Myr, we infer the rate of 19 supernovae(SNe) per year. Simply analytical models imply that 2.5 Z_{sun} in stars was reached when the gas mass reduced to 30% of the galaxy mass. The gas metallcity is 4.8 Z_{sun} at this point. The gas-to-dust mass ratio is then 120 +/- 73. The inferred dust production rate is 0.24 +/- 0.12 M_{sun} per SN. If 1/2 of L_{ir} comes from AGN emission, the rate is 0.48 +/- 0.24 M_{sun} per SN. We discuss the evolutionary link of SST J1604+4304 to other galaxy populations in terms of the stellar masses and the galactic winds.
291 - C. M. Casey 2009
[abridged] We present interferometric CO observations of twelve z~2 submillimetre-faint, star-forming radio galaxies (SFRGs) which are thought to be ultraluminous infrared galaxies (ULIRGs) possibly dominated by warmer dust (T_dust ~> 40 K) than subm illimetre galaxies (SMGs) of similar luminosities. Four other CO-observed SFRGs are included from the literature, and all observations are taken at the Plateau de Bure Interferometer (PdBI) in the compact configuration. Ten of the sixteen SFRGs observed in CO (63%) are detected at >4sigma with a mean inferred molecular gas mass of ~2*10^10 M_sun. SFRGs trend slightly above the local ULIRG L_FIR-L_CO relation. Since SFRGs are about two times fainter in radio luminosity but exhibit similar CO luminosities to SMGs, this suggests SFRGs are slightly more efficient star formers than SMGs at the same redshifts. SFRGs also have a narrow mean CO line width, 320+-80km/s. SFRGs bridge the gap between properties of very luminous >5*10^12 L_sun SMGs and those of local ULIRGs and are consistent with intermediate stage major mergers. We suspect that more moderate-luminosity SMGs, not yet surveyed in CO, would show similar molecular gas properties to SFRGs. The AGN fraction of SFRGs is consistent with SMGs and is estimated to be 0.3+-0.1, suggesting that SFRGs are observed near the peak phase of star formation activity and not in a later, post-SMG enhanced AGN phase. This CO survey of SFRGs serves as a pilot project for the much more extensive survey of Herschel and SCUBA-2 selected sources which only partially overlap with SMGs. Better constraints on CO properties of a diverse high-z ULIRG population are needed from ALMA to determine the evolutionary origin of extreme starbursts, and what role ULIRGs serve in catalyzing the formation of massive stellar systems in the early Universe.
Dust attenuation curves in external galaxies are useful to study their dust properties as well as to interpret their intrinsic spectral energy distributions. In particular the presence or absence of a UV bump at 2175 A remains an open issue which has consequences on the interpretation of broad band colours of distant galaxies. We study the dust attenuation curve in the UV range at z >1. In particular we search for the presence of a UV bump. We use deep photometric data of the CDFS obtained with intermediate and broad band filters by the MUSYC project to sample the UV rest-frame of galaxies with 1<z <2. Herschel/PACS and Spitzer/MIPS data are used to measure the dust emission. 30 galaxies were selected with high S/N in all bands. Their SEDs from the UV to the far-IR are fitted using the CIGALE code and the characteristics of the dust attenuation curve are obtained. The mean dust attenuation curve we derive exhibits a UV bump at 2175A whose amplitude corresponds to 35 % (76%) that of the MW (LMC2 supershell) extinction curve. An analytical expression of the average attenuation curve is given, it is found slightly steeper than the Calzetti et al. one, although at a 1 sigma level. Our galaxy sample is used to study the derivation of the slopes of the UV continuum from broad band colours, including the GALEX FUV-NUV colour. Systematic errors induced by the presence of the bump are quantified. We compare dust attenuation factors measured with CIGALE to the slope of the UV continuum and find that there is a large scatter around the relation valid for local starbursts (0.7 mag). The uncertainties on the determination of the UV slope lead to an extra systematic error of the order of 0.3 to 0.7 mag on dust attenuation when a filter overlaps the UV bump.
Using deep 100-160 micron observations in GOODS-S from the GOODS-H survey, combined with HST/WFC3 NIR imaging from CANDELS, we present the first morphological analysis of a complete, FIR selected sample of 52 ULIRGs at z~2. We also make use of a comp arison sample of galaxies without Herschel detections but with the same z and magnitude distribution. Our visual classifications of these two samples indicate that the fraction of objects with disk and spheroid morphologies is roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs. The combination of disk and irregular/interacting morphologies suggests that early stage interactions and minor mergers could play an important role in ULIRGs at z~2. We compare these fractions with those of a z~1 sample across a wide luminosity range and find that the fraction of disks decreases systematically with L_IR while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z~2 and z~1. We investigate the position of the ULIRGs, along with 70 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (lie more than a factor of 3 above the main sequence relation). The morphologies of starbursts are dominated by interacting and merging systems (50%). If irregular disks are included as potential minor mergers, then we find that up to 73% of starbursts are involved in a merger or interaction at some level. Although the final coalescence of a major merger may not be required for the high luminosities of ULIRGs at z~2 as is the case locally, the large fraction of interactions at all stages and potential minor mergers suggest that the high star formation rates of ULIRGs are still largely externally triggered at z~2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا