ﻻ يوجد ملخص باللغة العربية
Using deep 100-160 micron observations in GOODS-S from the GOODS-H survey, combined with HST/WFC3 NIR imaging from CANDELS, we present the first morphological analysis of a complete, FIR selected sample of 52 ULIRGs at z~2. We also make use of a comparison sample of galaxies without Herschel detections but with the same z and magnitude distribution. Our visual classifications of these two samples indicate that the fraction of objects with disk and spheroid morphologies is roughly the same but that there are significantly more mergers, interactions, and irregular galaxies among the ULIRGs. The combination of disk and irregular/interacting morphologies suggests that early stage interactions and minor mergers could play an important role in ULIRGs at z~2. We compare these fractions with those of a z~1 sample across a wide luminosity range and find that the fraction of disks decreases systematically with L_IR while the fraction of mergers and interactions increases, as has been observed locally. At comparable luminosities, the fraction of ULIRGs with various morphological classifications is similar at z~2 and z~1. We investigate the position of the ULIRGs, along with 70 LIRGs, on the specific star formation rate versus redshift plane, and find 52 systems to be starbursts (lie more than a factor of 3 above the main sequence relation). The morphologies of starbursts are dominated by interacting and merging systems (50%). If irregular disks are included as potential minor mergers, then we find that up to 73% of starbursts are involved in a merger or interaction at some level. Although the final coalescence of a major merger may not be required for the high luminosities of ULIRGs at z~2 as is the case locally, the large fraction of interactions at all stages and potential minor mergers suggest that the high star formation rates of ULIRGs are still largely externally triggered at z~2.
Using HST/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we examine the role that major galaxy mergers play in triggering active galactic nuclei (AGN) activity at z~2. Our sample consists o
We have used high-resolution, HST WFC3/IR, near-infrared imaging to conduct a detailed bulge-disk decomposition of the morphologies of ~200 of the most massive (M_star > 10^11 M_solar) galaxies at 1<z<3 in the CANDELS-UDS field. We find that, while s
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala
We analyze the multi-wavelength photometric and spectroscopic data of 12 ultraluminous infrared galaxies (ULIRGs) at z ~ 1 and compare them with models of stars and dust in order to study the extinction law and star formation in young infrared (IR) g
ABRIDGED-This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z~3. This has been possible thanks to the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed with the PACS instr