ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport through graphene on SrTiO3

64   0   0.0 ( 0 )
 نشر من قبل Benjamin Sacepe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report transport measurements through graphene on SrTiO3 substrates as a function of magnetic field B, carrier density n, and temperature T. The large dielectric constant of SrTiO3 screens very effectively long-range electron-electron interactions and potential fluctuations, making Dirac electrons in graphene virtually non-interacting. The absence of interactions results in a unexpected behavior of the longitudinal resistance in the N=0 Landau level, and in a large suppression of the transport gap in nano-ribbons. The bulk transport properties of graphene at B=0T, on the contrary, are completely unaffected by the substrate dielectric constant.

قيم البحث

اقرأ أيضاً

We present Coulomb blockade measurements in a graphene double dot system. The coupling of the dots to the leads and between the dots can be tuned by graphene in-plane gates. The coupling is a non-monotonic function of the gate voltage. Using a purely capacitive model, we extract all relevant energy scales of the double dot system.
196 - I. Aliaj , I. Torre , V. Miseikis 2016
We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO3/SrTiO3 oxide junction hosting a 4 nm-deep two-dimensional electron system. At low graphene-oxide inter-layer bias the two electron systems are electri cally isolated, despite their small spatial separation, and very efficient reciprocal gating is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic depletion and tunneling across the LaAlO3 barrier. The relevance of these results in the context of strongly-coupled bilayer systems is discussed.
We study the quantization of Dirac fermions in lithographically defined graphene nanoconstrictions. We observe quantized conductance in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO_2 wafer. This nanofa brication method allows us to obtain well defined edges in the nanoconstrictions, thus reducing the effects of edge roughness on the conductance. We prove the occurrence of ballistic transport and identify several size quantization plateaus in the conductance at low temperature. Experimental data and numerical simulations show good agreement, demonstrating that the smoothing of the plateaus is not related to edge roughness but to quantum interference effects.
We study the transport of charge carriers through finite graphene structures. The use of numerical exact kernel polynomial and Green function techniques allows us to treat actual sized samples beyond the Dirac-cone approximation. Particularly we inve stigate disordered nanoribbons, normal-conductor/graphene interfaces and normal-conductor/graphene/normal-conductor junctions with a focus on the behavior of the local density of states, single-particle spectral function, optical conductivity and conductance. We demonstrate that the contacts and bulk disorder will have a major impact on the electronic properties of graphene-based devices.
105 - A.Ron , E.Maniv , D.Graf 2014
Resistance as a function of temperature down to 20mK and magnetic fields up to 18T for various carrier concentrations is measured for nanowires made from the SrTiO3/LaAlO3 interface using a hard mask shadow deposition technique. The narrow width of t he wires (of the order of 50nm) allows us to separate out the magnetic effects from the dominant superconducting ones at low magnetic fields. At this regime hysteresis loops are observed along with the superconducting transition. From our data analysis we find that the magnetic order probed by the giant magnetoresistance (GMR) effect vanishes at TCurie = 954 mK. This order is not a simple ferromagnetic state but consists of domains with opposite magnetization having a preferred in-plane orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا