ترغب بنشر مسار تعليمي؟ اضغط هنا

The XDSPRES CL-based package for reducing OSIRIS cross-dispersed spectra

54   0   0.0 ( 0 )
 نشر من قبل Daniel Ruschel-Dutra
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a description of the CL-based package XDSPRES, which aims at being a complete reducing facility for cross-dispersed spectra taken with the Ohio State Infrared Imager/Spectrometer, as installed at the SOAR telescope. This instrument provides spectra in the range between 1.2um and 2.35um in a single exposure, with resolving power of R ~ 1200. XDSPRES consists of two tasks, namely xdflat and doosiris. The former is a completely automated code for preparing normalized flat field images from raw flat field exposures. Doosiris was designed to be a complete reduction pipeline, requiring a minimum of user interaction. General steps towards a fully reduced spectrum are explained, as well as the approach adopted by our code. The software is available to the community through the web site http://www.if.ufrgs.br/~ruschel/software.

قيم البحث

اقرأ أيضاً

We describe a flexible data reduction package for high resolution cross-dispersed echelle data. This open-source package is developed in Python and includes optional GUIs for most of the steps. It does not require any pre-knowledge about the form or position of the echelle-orders. It has been tested on cross-dispersed echelle spectrographs between 13k and 115k resolution (bifurcated fiber-fed spectrogaph ESO-HARPS and single fiber-fed spectrograph TNT-MRES). HiFLEx can be used to determine radial velocities and is designed to use the TERRA package but can also control the radial velocity packages such as CERES and SERVAL to perform the radial velocity analysis. Tests on HARPS data indicates radial velocities results within 3m/s of the literature pipelines without any fine tuning of extraction parameters.
Our understanding of the dynamics of the interstellar medium is informed by the study of the detailed velocity structure of emission line observations. One approach to study the velocity structure is to decompose the spectra into individual velocity components; this leads to a description of the dataset that is significantly reduced in complexity. However, this decomposition requires full automation lest it becomes prohibitive for large datasets, such as Galactic plane surveys. We developed GaussPy+, a fully automated Gaussian decomposition package that can be applied to emission line datasets, especially large surveys of HI and isotopologues of CO. We built our package upon the existing GaussPy algorithm and significantly improved its performance for noisy data. New functionalities of GaussPy+ include: i) automated preparatory steps, such as an accurate noise estimation, which can also be used as standalone applications; ii) an improved fitting routine; iii) an automated spatial refitting routine that can add spatial coherence to the decomposition results by refitting spectra based on neighbouring fit solutions. We thoroughly tested the performance of GaussPy+ on synthetic spectra and a test field from the Galactic Ring Survey. We found that GaussPy+ can deal with cases of complex emission and even low to moderate signal-to-noise values.
The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE cal culations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.
The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image conta ins about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.
Optical tracking systems typically trade-off between astrometric precision and field-of-view. In this work, we showcase a networked approach to optical tracking using very wide field-of-view imagers that have relatively low astrometric precision on t he scheduled OSIRIS-REx slingshot manoeuvre around Earth on September 22nd, 2017. As part of a trajectory designed to get OSIRIS-REx to NEO 101955 Bennu, this flyby event was viewed from 13 remote sensors spread across Australia and New Zealand to promote triangulatable observations. Each observatory in this portable network was constructed to be as lightweight and portable as possible, with hardware based off the successful design of the Desert Fireball Network. Over a 4 hour collection window, we gathered 15,439 images of the night sky in the predicted direction of the OSIRIS-REx spacecraft. Using a specially developed streak detection and orbit determination data pipeline, we detected 2,090 line-of-sight observations. Our fitted orbit was determined to be within about 10~km of orbital telemetry along the observed 109,262~km length of OSIRIS-REx trajectory, and thus demonstrating the impressive capability of a networked approach to SSA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا