ترغب بنشر مسار تعليمي؟ اضغط هنا

FIBRE-pac: FMOS image-based reduction package

56   0   0.0 ( 0 )
 نشر من قبل Fumihide Iwamuro
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for the airglow masks. In spite of these features, almost all of the reduction processes except for a few steps are carried out automatically by scripts in text format making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.

قيم البحث

اقرأ أيضاً

Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30 diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9-1.8um) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner called Echidna together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS and show the results of our on-sky engineering observations to date.
ZE3RA is the software package responsible for processing the raw data from the ZEPLIN-III dark matter experiment and its reduction into a set of parameters used in all subsequent analyses. The detector is a liquid xenon time projection chamber with s cintillation and electroluminescence signals read out by an array of 31 photomultipliers. The dual range 62-channel data stream is optimised for the detection of scintillation pulses down to a single photoelectron and of ionisation signals as small as those produced by single electrons. We discuss in particular several strategies related to data filtering, pulse finding and pulse clustering which are tuned to recover the best electron/nuclear recoil discrimination near the detection threshold, where most dark matter elastic scattering signatures are expected. The software was designed assuming only minimal knowledge of the physics underlying the detection principle, allowing an unbiased analysis of the experimental results and easy extension to other detectors with similar requirements.
We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contras t data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompass- ing pre- and post-processing algorithms, potential sources position and flux estimation, and sensitivity curves generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithm capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization (NMF), which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP we investigated the presence of additional companions around HR8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.
CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coude train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simu ltaneously provides improved throughput, reduced aperture losses and increased spectral resolution. Sixteen optical fibres collect light from a 5.0 arcsecond^2 area of sky and reformat it into the equivalent of a 0.6 arcsecond wide slit, delivering a spectral resolution of R = 70000 and up to twice as much flux as the standard 1 arcsecond slit of the Coude train. CYCLOPS2 also adds support for simultaneous ThAr wavelength calibration via a dedicated fibre. CYCLOPS2 consists of three main components, the fore-optics unit, fibre bundle and slit unit. The fore optics unit incorporates magnification optics and a lenslet array and is designed to mount to the CURE Cassegrain instrument interface, which provides acquisition, guiding and calibration facilities. The fibre bundle transports the light from the Cassegrain focus to the UCLES spectrograph at Coude and also includes a fibre mode scrambler. The slit unit consists of the fibre slit and relay optics to project an image of the slit onto the entrance aperture of the UCLES spectrograph. CYCLOPS2 builds on experience with the first generation CYCLOPS fibre system, which we also describe in this paper. We present the science case for an image slicing fibre feed for echelle spectroscopy and describe the design of CYCLOPS and CYCLOPS2.
47 - Joshua G. Albert 2020
Since its debut by John Skilling in 2004, nested sampling has proven a valuable tool to the scientist, providing hypothesis evidence calculations and parameter inference for complicated posterior distributions, particularly in the field of astronomy. Due to its computational complexity and long-running nature, in the past, nested sampling has been reserved for offline-type Bayesian inference, leaving tools such as variational inference and MCMC for online-type, time-constrained, Bayesian computations. These tools do not easily handle complicated multi-modal posteriors, discrete random variables, and posteriors lacking gradients, nor do they enable practical calculations of the Bayesian evidence. An opening thus remains for a high-performance out-of-the-box nested sampling package that can close the gap in computational time, and let nested sampling become common place in the data science toolbox. We present JAX-based nested sampling (JAXNS), a high-performance nested sampling package written in XLA-primitives using JAX, and show that it is several orders of magnitude faster than the currently available nested sampling implementations of PolyChord, MultiNEST, and dynesty, while maintaining the same accuracy of evidence calculation. The JAXNS package is publically available at url{https://github.com/joshuaalbert/jaxns}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا