ﻻ يوجد ملخص باللغة العربية
For G = GL_2, PGL_2 and SL_2 we prove that the perverse filtration associated to the Hitchin map on the cohomology of the moduli space of twisted G-Higgs bundles on a Riemann surface C agrees with the weight filtration on the cohomology of the twisted G character variety of C, when the cohomologies are identified via non-Abelian Hodge theory. The proof is accomplished by means of a study of the topology of the Hitchin map over the locus of integral spectral curves.
We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N.
Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations
We count points over a finite field on wild character varieties of Riemann surfaces for singularities with regular semisimple leading term. The new feature in our counting formulas is the appearance of characters of Yokonuma-Hecke algebras. Our resul
Here we survey several results and conjectures on the cohomology of the total space of the Hitchin system: the moduli space of semi-stable rank n and degree d Higgs bundles on a complex algebraic curve C. The picture emerging is a dynamic mixture of