ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin-Violating Dark Matter and Neutrinos From the Sun

110   0   0.0 ( 0 )
 نشر من قبل Yue Zhang
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of theories where the dark matter-nucleon spin-independent interactions break the isospin symmetry. We point out that, while the direct detection bounds with heavy targets like Xenon are weakened and reconciled with the positive signals in DAMA and CoGeNT experiments, the indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the annihilation is dominated by heavy quark or $tau$-lepton final states. As a consequence, the qualified isospin violating dark matter candidate has to preferably annihilate into light flavors.

قيم البحث

اقرأ أيضاً

We study a simple model that can give rise to isospin-violating interactions of Dirac fermion asymmetric dark matter to protons and neutrons through the interference of a scalar and U(1)$$ gauge boson contribution. The model can yield a large suppres sion of the elastic scattering cross section off Xenon relative to Silicon thus reconciling CDMS-Si and LUX results while being compatible with LHC findings on the 126 GeV Higgs, electroweak precision tests and flavour constraints.
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVD M), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z, or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon- or Z-mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
We discuss a limitation on extracting bounds on the scattering cross section of dark matter with nucleons, using neutrinos from the Sun. If the dark matter particle is sufficiently light (less than about 4 GeV), the effect of evaporation is not negli gible and the capture process goes in equilibrium with the evaporation. In this regime, the flux of solar neutrinos of dark matter origin becomes independent of the scattering cross section and therefore no constraint can be placed on it. We find the minimum values of dark matter masses for which the scattering cross section on nucleons can be probed using neutrinos from the Sun. We also provide simple and accurate fitting functions for all the relevant processes of GeV-scale dark matter in the Sun.
Dark matter halos contain a wealth of substructure in the form of subhalos and tidal streams. Enhancements in the dark matter density of these regions leads to enhanced rates in direct detection experiments, as well as enhanced dark matter capture ra tes in the Sun and the Earth. Direct detection experiments probe the present-day dark matter density, while energetic neutrinos probe the past history of the dark matter density along the solar systems orbit about the Galactic center. We discuss how an elevated energetic neutrino flux can be used to probe the level of substructure present at the Galactic radius of the solar system.
Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark m atter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا