ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter Searches for Monoenergetic Neutrinos Arising from Stopped Meson Decay in the Sun

146   0   0.0 ( 0 )
 نشر من قبل Carsten Rott
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showers give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.



قيم البحث

اقرأ أيضاً

165 - Shao-Long Chen , Yue Zhang 2011
We study the indirect detection of dark matter through neutrino flux from their annihilation in the center of the Sun, in a class of theories where the dark matter-nucleon spin-independent interactions break the isospin symmetry. We point out that, w hile the direct detection bounds with heavy targets like Xenon are weakened and reconciled with the positive signals in DAMA and CoGeNT experiments, the indirect detection using neutrino telescopes can impose a relatively stronger constraint and brings tension to such explanation, if the annihilation is dominated by heavy quark or $tau$-lepton final states. As a consequence, the qualified isospin violating dark matter candidate has to preferably annihilate into light flavors.
We discuss a limitation on extracting bounds on the scattering cross section of dark matter with nucleons, using neutrinos from the Sun. If the dark matter particle is sufficiently light (less than about 4 GeV), the effect of evaporation is not negli gible and the capture process goes in equilibrium with the evaporation. In this regime, the flux of solar neutrinos of dark matter origin becomes independent of the scattering cross section and therefore no constraint can be placed on it. We find the minimum values of dark matter masses for which the scattering cross section on nucleons can be probed using neutrinos from the Sun. We also provide simple and accurate fitting functions for all the relevant processes of GeV-scale dark matter in the Sun.
The gravitino in models with a small violation of R-parity is a well-motivated decaying dark matter candidate that leads to a cosmological scenario that is consistent with big bang nucleosynthesis and thermal leptogenesis. The gravitino lifetime is c osmologically long-lived since its decays are suppressed by the Planck-scale as well as the small R-parity violating parameter. We discuss the signals in different cosmic-ray species coming from the decay of gravitino dark matter, namely gamma rays, positrons, antiprotons, antideuterons and neutrinos. Comparison to cosmic-ray data can be used to constrain the parameters of the model.
The search for and identification of neutralino dark matter in supersymmetry requires a multi-pronged approach with important roles played by collider, direct and indirect dark matter detection experiments. In this report, we summarize the sensitivit y of such searches at the 7, 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP and XENON1T, to such particles within the context of the 19-parameter p(henomenological)MSSM. This report provides an outline of the current status of our results and our expectations for future analyses.
The coherent contribution of all neutrons in neutrino nucleus scattering due to the neutral current is examined considering the boron solar neutrinos. These neutrinos could potentially become a source of background in the future dark matter searches aiming at nucleon cross sections in the region well below the few events per ton per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا