ترغب بنشر مسار تعليمي؟ اضغط هنا

Alice: The Rosetta Ultraviolet Imaging Spectrograph

151   0   0.0 ( 0 )
 نشر من قبل S. Alan Stern
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A spectral band with a spectral resolution between 8 A and 12 A for extended sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a concave holographic reflection grating. The imaging microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a 2 D delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenkos coma, its nucleus, and the nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the missions two asteroid flyby targets and of Mars, its moons, and of Earths moon. ALICE has already successfully completed the in-flight commissioning phase and is operating normally in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign

قيم البحث

اقرأ أيضاً

This paper explores the uniqueness of ESA Rosetta mission operations from the Alice instrument point of view, documents lessons learned, and suggests operations ideas for future missions. The Alice instrument mounted on the Rosetta orbiter is an imag ing spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy with the scientific objectives of measuring properties of the escaping gas and dust, and studying the surface properties, including searching for exposed ices. We describe the operations processes during the comet encounter period, the many interfaces to contend with, the constraints that impacted Alice, and how the Alice science goals of measuring the cometary gas characteristics and their evolution were achieved. We provide details that are relevant to the use and interpretation of Alice data and published results. All these flight experiences and lessons learned will be useful for future cometary missions that include ultraviolet spectrographs in particular, and multi-instrument international payloads in general.
The New Horizons ALICE instrument is a lightweight (4.4 kg), low-power (4.4 Watt) imaging spectrograph aboard the New Horizons mission to Pluto/Charon and the Kuiper Belt. Its primary job is to determine the relative abundances of various species in Plutos atmosphere. ALICE will also be used to search for an atmosphere around Plutos moon, Charon, as well as the Kuiper Belt Objects (KBOs) that New Horizons hopes to fly by after Pluto-Charon, and it will make UV surface reflectivity measurements of all of these bodies as well. The instrument incorporates an off-axis telescope feeding a Rowland-circle spectrograph with a 520-1870 angstroms spectral passband, a spectral point spread function of 3-6 angstroms FWHM, and an instantaneous spatial field-of-view that is 6 degrees long. Different input apertures that feed the telescope allow for both airglow and solar occultation observations during the mission. The focal plane detector is an imaging microchannel plate (MCP) double delay-line detector with dual solar-blind opaque photocathodes (KBr and CsI) and a focal surface that matches the instruments 15-cm diameter Rowland-circle. In what follows, we describe the instrument in greater detail, including descriptions of its ground calibration and initial in flight performance.
90 - Paul D. Feldman 2015
Aims. The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods. Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comets neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results. Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H I and O I emissions. The electrons are produced by photoionization of H2O. The observed C I emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H I reflects the variation of CO2 to H2O column abundance in the coma.
103 - Paul D. Feldman 2016
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The initial observa tions, made following orbit insertion in August 2014, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H2O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO2, the relative H I and C I line intensities reflecting the variation of CO2 to H2O column abundance along the line-of-sight through the coma. Beginning in mid-April 2015, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a corresponding enhancement in long wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O I 1356/O I 1304 suggests O2 as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in June 2015 the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.
We have detected H$_2$O and O$_2$ absorption against the far-UV continuum of stars located on lines of sight near the nucleus of Comet 67P/Churyumov-Gerasimenko using the Alice imaging spectrograph on Rosetta. These stellar appulses occurred at impac t parameters of $rho=4$-20 km, and heliocentric distances ranging from $R_h=-1.8$ to 2.3 AU (negative values indicate pre-perihelion observations). The measured H$_2$O column densities agree well with nearly contemporaneous values measured by VIRTIS-H. The clear detection of O$_2$ independently confirms the initial detection by the ROSINA mass spectrometer; however, the relative abundance of O$_2$/H$_2$O derived from the stellar spectra (11%-68%, with a median value of 25%) is considerably larger than published values found by ROSINA. The cause of this difference is unclear, but potentially related to ROSINA measuring number density at the spacecraft position while Alice measures column density along a line of sight that passes near the nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا