ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the gamma process

116   0   0.0 ( 0 )
 نشر من قبل Iris Dillmann
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E_p=2.75 MeV to 9 MeV, close to the upper end of the respective Gamow window of the gamma process. We have determined cross sections for 102Pd(p,gamma)103Ag, 104Pd(p,gamma)105Ag, and 105Pd(p,n)105Ag, as well as partial cross sections of 104Pd(p,n)104Ag^g, 105Pd(p,gamma)106Ag^m, 106Pd(p,n)106Ag^m, and 110Pd(p,n)110Ag^m with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in gamma-process calculations.

قيم البحث

اقرأ أيضاً

Photoneutron cross sections were measured for $^{58}$Ni, $^{60}$Ni, $^{61}$Ni, and $^{64}$Ni at energies between the one-neutron and two-neutron thresholds using quasi-monochromatic $gamma$-ray beams produced in laser Compton-scattering at the NewSUB ARU synchrotron radiation facility. The new photoneutron data are used to extract the $gamma$-ray strength function above the neutron threshold complementing the information obtained by the Oslo method below the threshold. We discuss radiative neutron capture cross sections and the Maxwellian-averaged cross sections for Ni isotopes including $^{63}$Ni, a branching point nucleus along the weak s-process path. The cross sections are calculated with the experimentally constrained $gamma$-ray strength functions from the Hartree-Fock-Bogolyubov plus quasi-particle-random phase approximation based on the Gogny D1M interaction for both $E1$ and $M1$ components and supplemented with the $M1$ upbend.
261 - Z. Korkulu , N. Ozkan , G. G. Kiss 2018
The aim of the present work is to measure the $^{121}$Sb($alpha,gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I, and $^{123}$Sb($alpha$,n)$^{126}$I reaction cross sections. The $alpha$-induced reactions on natural and enriched antimony targets were investigated using the activation technique. The ($alpha$,$gamma$) cross sections of $^{121}$Sb were measured and are reported for first time. To determine the cross section of the $^{121}$Sb($alpha$,$gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I, and $^{123}$Sb($alpha$,n)$^{126}$I reactions, the yields of $gamma$-rays following the $beta$-decay of the reaction products were measured. For the measurement of the lowest cross sections, the characteristic X-rays were counted with a LEPS (Low Energy Photon Spectrometer) detector. The cross section of the $^{121}$Sb($alpha$,$gamma$)$^{125}$I, $^{121}$Sb($alpha$,n)$^{124}$I and $^{123}$Sb($alpha$,n)$^{126}$I reactions were measured with high precision in an energy range between 9.74 MeV to 15.48 MeV, close to the astrophysically relevant energy window. The results are compared with the predictions of statistical model calculations. The ($alpha$,n) data show that the $alpha$ widths are predicted well for these reactions. The ($alpha$,$gamma$) results are overestimated by the calculations but this is due to the applied neutron- and $gamma$ widths. Relevant for the astrophysical reaction rate is the $alpha$ width used in the calculations.While for other reactions the $alpha$ widths seem to have been overestimated and their energy dependence was not described well in the measured energy range, this is not the case for the reactions studied here. The result is consistent with the proposal that additional reaction channels, such as Coulomb excitation, may have led to the discrepancies found in other reactions.
We have developed and tested an experimental technique for the measurement of low-energy (p,n) reactions in inverse kinematics relevant to nuclear astrophysics. The proposed setup is located at the ReA3 facility at the National Superconducting Cyclot ron Laboratory. In the current approach, we operate the beam-transport line in ReA3 as a recoil separator while tagging the outgoing neutrons from the (p,n) reactions with the low-energy neutron detector array (LENDA). The developed technique was verified by using the $^{40}$Ar(p,n)$^{40}$K reaction as a probe. The results of the proof-of-principle experiment with the $^{40}$Ar beam show that cross-section measurements within an uncertainty of $sim$25% are feasible with count rates up to 7 counts/mb/pnA/s. In this article, we give a detailed description of the experimental setup, and present the analysis method and results from the test experiment. Future plans on using the technique in experiments with the separator for capture reactions (SECAR) that is currently being commissioned are also discussed.
The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BN N + sEPAX model can reasonably extrapolate with less information compared with BNN method. The BNN + sEPAX method provides a new approach to predict the energy-dependent residual cross sections produced in proton-induced spallation reactions from tens of MeV/u up to several GeV/u.
As a continuation of a systematic study of reactions relevant to the astrophysical p process, the cross sections of the 74,76Se(p,gamma)75,77Br and 82Se(p,n)82Br reactions have been measured at energies from 1.3 to 3.6 MeV using an activation techniq ue. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the NON-SMOKER and MOST codes. The sensitivity of the calculations to variations in the optical proton potential and the nuclear level density was studied. Good agreement between theoretical and experimental reaction rates was found for the reactions 74Se(p,gamma)75Br and 82Se(p,n)82Br.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا