ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton induced reaction cross section measurements on Se isotopes for the astrophysical p process

122   0   0.0 ( 0 )
 نشر من قبل Gyorgy Gyurky
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As a continuation of a systematic study of reactions relevant to the astrophysical p process, the cross sections of the 74,76Se(p,gamma)75,77Br and 82Se(p,n)82Br reactions have been measured at energies from 1.3 to 3.6 MeV using an activation technique. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the NON-SMOKER and MOST codes. The sensitivity of the calculations to variations in the optical proton potential and the nuclear level density was studied. Good agreement between theoretical and experimental reaction rates was found for the reactions 74Se(p,gamma)75Br and 82Se(p,n)82Br.

قيم البحث

اقرأ أيضاً

The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % is otopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and $S$ factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.
The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically relevant region (which lies between 7.8 and 11.48 MeV at 3 GK stellar temperature). The 162Er(a,n)165Yb reaction was studied above the reaction threshold between Ec.m. = 12.19 and 16.09 MeV. The fact that the 162Er(a,g)166Yb cross sections were measured below the (a,n) threshold at first time in this mass region opens the opportunity to study directly the a-widths required for the determination of astrophysical reaction rates. The data clearly show that compound nucleus formation in this reaction proceeds differently than previously predicted.
The photodisintegration cross sections for the 94Mo({gamma},n) and 90Zr({gamma},n) reactions have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity {gamma}-ray Source (HI{gamma}S) facility of the Triangle Un iversities Nuclear Laboratory (TUNL). The energy dependence of the photoneutron reaction cross sections was measured with high precision from the respective neutron emission thresholds up to 13.5 MeV. These measurements contribute to a broader investigation of nuclear reactions relevant to the understanding of the p-process nucleosynthesis. The results are compared with the predictions of Hauser-Feshbach statistical model calculations using two different models for the dipole {gamma}-ray strength function. The resulting 94Mo({gamma},n) and 90Zr({gamma},n) photoneutron stellar reaction rates as a function of temperature in the typical range of interest for the p-process nucleosynthesis show how sensitive the photoneutron stellar reaction rate can be to the experimental data in the vicinity of the neutron threshold.
375 - T. Szucs , G. G. Kiss , Gy. Gyurky 2017
The stellar reaction rates of radiative $alpha$-capture reactions on heavy isotopes are of crucial importance for the $gamma$ process network calculations. These rates are usually derived from statistical model calculations, which need to be validate d, but the experimental database is very scarce. This paper presents the results of $alpha$-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of $^{191}$Ir($alpha$,$gamma$)$^{195}$Au, $^{191}$Ir($alpha$,n)$^{194}$Au, $^{193}$Ir($alpha$,n)$^{196m}$Au, $^{193}$Ir($alpha$,n)$^{196}$Au reactions have been measured with the activation technique between E$_alpha = 13.4$ MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the $alpha$+nucleus optical potential gives a good description of the experimental data.
The 106Cd(alpha,gamma)110Sn reaction cross section has been measured in the energy range of the Gamow window for the astrophysical p-process scenario. The cross sections for 106Cd(alpha,n)109Sn and for 106Cd(alpha,p)109In below the (alpha,n) threshol d have also been determined. The results are compared with predictions of the statistical model code NON-SMOKER using different input parameters. The comparison shows that a discrepancy for 106Cd(alpha,gamma)110Sn when using the standard optical potentials can be removed with a different alpha+106Cd potential. Some astrophysical implications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا