The imperfect termination of static electric fields at semiconducting surfaces has been long known in solid state and transistor physics. We show that the imperfect shielding leads to an offset in the distance between two surfaces as determined by electrostatic force measurements. The effect exists even in the case of good conductors (metals) albeit much reduced.
Several experimental demonstrations of the Casimir force between two closely spaced bodies have been realized over the past two decades. Extending the theory to incorporate the behavior of the force between two superconducting films close to their tr
ansition temperature has resulted in competing predictions. To date, no experiment exists that can test these theories, partly due to the difficulty in aligning two superconductors in close proximity, while still allowing for a temperature-independent readout of the arising force between them. Here we present an on-chip platform based on an optomechanical cavity in combination with a grounded superconducting capacitor, which overcomes these challenges and opens up the possibility to probe modifications to the Casimir effect between two closely spaced, freestanding superconductors as they transition into a superconducting state. We also perform preliminary force measurements that demonstrate the capability of these devices to probe the interplay between two widely measured quantum effects: Casimir forces and superconductivity.
We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplaces equation, the presence of patch potentials does not affect an electrostatic calibration (of f
orce and/or distance) of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.
We present Casimir force measurements in a sphere-plate configuration that consists of a high quality nanomembrane resonator and a millimeter sized gold coated sphere. The nanomembrane is fabricated from stoichiometric silicon nitride metallized with
gold. A Kelvin probe method is used in situ to image the surface potentials to minimize the distance-dependent residual force. Resonance-enhanced frequency-domain measurements of the nanomembrane motion allow for very high resolution measurements of the Casimir force gradient (down to a force gradient sensitivity of 3 uN/m). Using this technique, the Casimir force in the range of 100 nm to 2 um is accurately measured. Experimental data thus obtained indicate that the device system in the measured range is best described with the Drude model.
The recent discovery that silicon nitride membranes can be used as extremely high Q mechanical resonators makes possible a number of novel experiments, which include improved long range vacuum Casimir force measurements, and measurments of the proper
ties of liquid helium below the lambda point. It is noted that in the thermal correction to the Casimir force, the phase velocity of the excitations does not enter, with the force per unit area between parallel plates depending only on the temperature and distance between the plates. Thus it appears as possible to measure the phonon analog of the finite temperature Casimir force in liquid helium.
We report on measurements of forces acting between two conducting surfaces in a spherical-plane configuration in the 35 nm-1 micrometer separation range. The measurements are obtained by performing electrostatic calibrations followed by a residual an
alysis after subtracting the electrostatic-dependent component. We find in all runs optimal fitting of the calibrations for exponents smaller than the one predicted by electrostatics for an ideal sphere-plane geometry. We also find that the external bias potential necessary to minimize the electrostatic contribution depends on the sphere-plane distance. In spite of these anomalies, by implementing a parametrixation-dependent subtraction of the electrostatic contribution we have found evidence for short-distance attractive forces of magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss the relevance of our findings in the more general context of Casimir-Lifshitz force measurements, with particular regard to the critical issues of the electrical and geometrical characterization of the involved surfaces.
S.K. Lamoreaux
,A.O. Sushkov
.
(2011)
.
"Offsets in Electrostatically Determined Distances: Implications for Casimir Force Measurements"
.
Steve K. Lamoreaux
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا