ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetic sources distributed on shells in a Schwarzschild background

46   0   0.0 ( 0 )
 نشر من قبل Norman G\\\"urlebeck
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the Introduction we briefly recall our previous results on stationary electromagnetic fields on black-hole backgrounds and the use of spin-weighted spherical harmonics. We then discuss static electric and magnetic test fields in a Schwarzschild background using some of these results. As sources we do not consider point charges or current loops like in previous works, rather, we analyze spherical shells with smooth electric or magnetic charge distributions as well as electric or magnetic dipole distributions depending on both angular coordinates. Particular attention is paid to the discontinuities of the field, of the 4-potential, and their relation to the source.

قيم البحث

اقرأ أيضاً

We present a method for solving the first-order field equations in a post-Newtonian (PN) expansion. Our calculations generalize work of Bini and Damour and subsequently Kavanagh et al., to consider eccentric orbits on a Schwarzschild background. We d erive expressions for the retarded metric perturbation at the location of the particle for all $ell$-modes. We find that, despite first appearances, the Regge-Wheeler gauge metric perturbation is $C^0$ at the particle for all $ell$. As a first use of our solutions, we compute the gauge-invariant quantity $langle U rangle$ through 4PN while simultaneously expanding in eccentricity through $e^{10}$. By anticipating the $eto 1$ singular behavior at each PN order, we greatly improve the accuracy of our results for large $e$. We use $langle U rangle$ to find 4PN contributions to the effective one body potential $hat Q$ through $e^{10}$ and at linear order in the mass-ratio.
We show that the causal properties of asymptotically flat spacetimes depend on their dimensionality: while the time-like future of any point in the past conformal infinity $mathcal{I}^-$ contains the whole of the future conformal infinity $mathcal{I} ^+$ in $(2+1)$ and $(3+1)$ dimensional Schwarzschild spacetimes, this property (which we call the Penrose property) does not hold for $(d+1)$ dimensional Schwarzschild if $d>3$. We also show that the Penrose property holds for the Kerr solution in $(3+1)$ dimensions, and discuss the connection with scattering theory in the presence of positive mass.
Using Leavers continue fraction and time domain method, we investigate the wave dynamics of phantom scalar perturbation in the background of Schwarzschild black hole. We find that the presence of the negative kinetic energy terms modifies the standar d results in quasinormal spectrums and late-time behaviors of the scalar perturbations. The phantom scalar perturbation in the late-time evolution will grow with an exponential rate.
Using Leavers continue fraction and time domain method, we study the wave dynamics of phantom scalar perturbation in a Schwarzschild black string spacetime. We find that the quasinormal modes contain the imprint from the wavenumber $k$ of the fifth d imension. The late-time behaviors are dominated by the difference between the wavenumber $k$ and the mass $mu$ of the phantom scalar perturbation. For $k<mu$, the phantom scalar perturbation in the late-time evolution grows with an exponential rate as in the four-dimensional Schwarzschild black hole spacetime. While, for $k=mu$, the late-time behavior has the same form as that of the massless scalar field perturbation in the background of a black hole. Furthermore, for $k>mu$, the late-time evolution of phantom scalar perturbation is dominated by a decaying tail with an oscillation which is consistent with that of the usual massive scalar field. Thus, the Schwarzschild black string is unstable only against the phantom scalar perturbations which satisfy the wavelength $lambda>2pi/mu$. These information can help us know more about the wave dynamics of phantom scalar perturbation and the properties of black string.
We study geodesics in the Schwarzschild space-time affected by an uncertainty in the mass parameter described by a Gaussian distribution. This study could serve as a first attempt at investigating possible quantum effects of black hole space-times on the motion of matter in their surroundings as well as the role of uncertainties in the measurement of the black hole parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا