ﻻ يوجد ملخص باللغة العربية
It is shown that the historical summary of the growth in size of N-body simulations as measured by particle number in this review is missing some key milestones. Size matters, because particle number with appropriate force smoothing is a key method to suppress unwanted discreteness, so that the initial conditions and equations of motion are appropriate to growth by gravitational instability in a Poisson-Vlasov system appropriate to a Universe with dark matter. Published strong constraints on what can be done are not included in the review.
As an entry for the 2012 Gordon-Bell performance prize, we report performance results of astrophysical N-body simulations of one trillion particles performed on the full system of K computer. This is the first gravitational trillion-body simulation i
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a
Gravitational softening length is one of the key parameters to properly set up a cosmological $N$-body simulation. In this paper, we perform a large suit of high-resolution $N$-body simulations to revise the optimal softening scheme proposed by Power
Gravitational N-body simulations, that is numerical solutions of the equations of motions for N particles interacting gravitationally, are widely used tools in astrophysics, with applications from few body or solar system like systems all the way up
In the next decade, cosmological surveys will have the statistical power to detect the absolute neutrino mass scale. N-body simulations of large-scale structure formation play a central role in interpreting data from such surveys. Yet these simulatio