ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared and optical polarimetry around the low-mass star-forming region NGC 1333 IRAS 4A

108   0   0.0 ( 0 )
 نشر من قبل Felipe Alves
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed J- and R-band linear polarimetry with the 4.2 m William Herschel Telescope at the Observatorio del Roque de los Muchachos and with the 1.6 m telescope at the Observatorio do Pico dos Dias, respectively, to derive the magnetic field geometry of the diffuse molecular cloud surrounding the embedded protostellar system NGC 1333 IRAS 4A. We obtained interstellar polarization data for about two dozen stars. The distribution of polarization position angles has low dispersion and suggests the existence of an ordered magnetic field component at physical scales larger than the protostar. Some of the observed stars present intrinsic polarization and evidence of being young stellar objects. The estimated mean orientation of the interstellar magnetic field as derived from these data is almost perpendicular to the main direction of the magnetic field associated with the dense molecular envelope around IRAS 4A. Since the distribution of the CO emission in NGC 1333 indicates that the diffuse molecular gas has a multi-layered structure, we suggest that the observed polarization position angles are caused by the superposed projection along the line of sight of different magnetic field components.



قيم البحث

اقرأ أيضاً

137 - A. Coutens , C. Vastel , S. Cabrit 2013
Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance distribution with other star-forming regions, and to constrain their HDO/H2O ratios. Methods. Using the He rschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10}, respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.
Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Hersch el (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
The NGC 1333 IRAS 4A protobinary was observed in the ammonia (2, 2) and (3, 3) lines and in the 1.3 cm continuum with a high resolution (about 1.0 arcsec). The ammonia maps show two compact sources, one for each protostar, and they are probably proto stellar accretion disks. The disk associated with IRAS 4A2 is seen nearly edge-on and shows an indication of rotation. The A2 disk is brighter in the ammonia lines but dimmer in the dust continuum than its sibling disk, with the ammonia-to-dust flux ratios different by about an order of magnitude. This difference suggests that the twin disks have surprisingly dissimilar characters, one gas-rich and the other dusty. The A2 disk may be unusually active or hot, as indicated by its association with water vapor masers. The existence of two very dissimilar disks in a binary system suggests that the formation process of multiple systems has a controlling agent lacking in the isolated star formation process and that stars belonging to a multiple system do not necessarily evolve in phase with each other.
The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system . While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic Centre. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. We use high sensitivity, high spatial and spectral resolution observations obtained with ALMA to study transitions of the less abundant, optically thin, methanol-isotopologues: (13)CH3OH, CH3(18)OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming LTE and excitation temperatures of 120-330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD ratios that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic Centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced.
We have conducted deep JHKs imaging polarimetry of a ~8 x 8 area of the NGC 2071 star forming region. Our polarization data have revealed various infrared reflection nebulae (IRNe) associated with the central IR young star cluster NGC2071IR and ident ified their illuminating sources. There are at least 4 IRNe in NGC2071IR and several additional IRNe are identified around nearby young stars in the same field-of-view. Each illuminating source coincides with a known near-IR source except for IRS3, which is only a part of IRN2 and is illuminated by the radio source 1c. Aperture polarimetry of each cluster source is used to detect unresolved circumstellar disk/outflow systems. Aperture polarimetry of the other point-like sources within the field is made in this region for the first time. The magnetic field structures (from ~1 pc down to ~0.1 pc) are derived using both aperture polarimetry of the point-like sources and imaging polarimetry of the shocked H2 emission that is seen as the dominant knotty nebulae in the Ks band image; they are both of dichroic origin and the derived field directions are consistent with each other. The magnetic field direction projected on the sky is also consistent with that inferred from the 850 micron thermal continuum emission polarimetry of the central 0.2 pc region, but running roughly perpendicular (~75 degrees) to the direction of the large scale outflow. We argue that the field strength is too weak to align the outflow in the large scale field direction via magnetic braking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا