ترغب بنشر مسار تعليمي؟ اضغط هنا

Energetic constraints to chemo-photometric evolution of spiral galaxies

189   0   0.0 ( 0 )
 نشر من قبل Alberto Buzzoni
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alberto Buzzoni




اسأل ChatGPT حول البحث

The problem of chemo-photometric evolution of late-type galaxies is dealt with relying on prime physical arguments of energetic self-consistency between chemical enhancement of galaxy mass, through nuclear processing inside stars, and luminosity evolution of the system. Chemical enhancement is assessed in terms of the so-called yield metallicity, that is the metal abundance of processed mass inside stars, as constrained by the galaxy photometric history.



قيم البحث

اقرأ أيضاً

We are investigating the co-evolution of galaxies within groups combining multi-wavelength photometric and 2D kinematical observations. Here we focus on S0s showing star formation in ring/arm-like structures. We use smooth particle hydrodynamical sim ulations (SPH) with chemo-photometric implementation which provide dynamical and morphological information together with the spectral energy distribution (SED) at each evolutionary stage. As test cases, we simulate the evolution of two such S0s: NGC 1533 and NGC 3626. The merging of two halos with mass ratio 2:1, initially just composed of dark matter (DM) and gas, well match their observed SEDs, their surface brightness profiles and their overall kinematics. The residual star formation today rejuvenating the ring/arm like structures in these S0s is then a mere consequence of a major merger, i.e. this is a phase during the merger episode. The peculiar kinematical features, e.g. gas-stars counter rotation in NGC 3626, depends on the halos initial impact parameters. Furthermore, our simulations allow to follow, in a fully consistent way, the transition of these S0s through the green valley in the NUV-r vs. Mr colour magnitude diagram, which they cross in about 3-5 Gyr, before reaching their current position in the red sequence. We conclude that a viable mechanism driving the evolution of S0s in groups is of gravitational origin.
137 - E. Laurikainen , H. Salo , R. Buta 2010
Photometric scaling relations are studied for S0 galaxies and compared with those for spirals. New 2D K_s-band multi-component decompositions are presented for 122 early-type disk galaxies. Combining with our previous decompositions, the final sample consists of 175 galaxies. As a comparison sample we use the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS), for which similar decompositions have previously been made by us. Our main results are: (1) Important scaling relations are present, indicating that the formative processes of bulges and disks in S0s are coupled like has been previously found for spirals. (2) We obtain median r_{eff}/h_r = 0.20, 0.15 and 0.10 for S0, S0/a-Sa and Sab-Sc galaxies: these are smaller than predicted by simulation models in which bulges are formed by galaxy mergers. (3) The properties of bulges of S0s are different from the elliptical galaxies, which is manifested in the M_K(bulge) vs r_{eff} relation, in the photometric plane, and to some extent also in the Kormendy relation. The bulges of S0s are similar to bulges of spirals with M_K(bulge) < -20 mag. Some S0s have small bulges, but their properties are not compatible with the idea that they could evolve to dwarfs by galaxy harassment. (4) The relative bulge flux B/T for S0s covers the full range found in the Hubble sequence. (5) The values and relations of the parameters of the disks of the S0 galaxies in NIRS0S are similar to those obtained for spirals in the OSUBSGS. Overall, our results support the view that spiral galaxies with bulges brighter than -20 mag in the K-band can evolve directly into S0s, due to stripping of gas followed by truncated star formation.
We study the chemical and spectro-photometric evolution of galactic disks with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results to a large body of observational data on present day galactic disks, including: disk sizes and central surface brightness, Tully-Fisher relations in various wavelength bands, colour-colour and colour-magnitude relations, gas fractions vs. magnitudes and colours, abundances vs. local and integrated properties, as well as spectra for different galactic rotational velocities. Despite the extremely simple nature of our models, we find satisfactory agreement with all those observables, provided the timescale for star formation in low mass disks is longer than for more massive ones. This assumption is apparently in contradiction with the standard picture of hierarchical cosmology. We find, however, that it is extremely successfull in reproducing major features of present day disks, like the change in the slope of the Tully-Fisher relation with wavelength, the fact that more massive galaxies are on average ``redder than low mass ones (a generic problem of standard hierarchical models) and the metallicity-luminosity relation for spirals. It is concluded that, on a purely empirical basis, this new picture at least as successful as the standard one. Observations at high redshifts could help to distinguish between the two possibilities.
We explore the implications for the high redshift universe of ``state-of-the-art models for the chemical and spectrophotometric evolution of spiral galaxies. The models are based on simple ``scaling relations for discs, obtained in the framework of C old Dark Matter models for galaxy formation, and were ``calibrated as to reproduce the properties of the Milky Way and of nearby discs (at redshift z~0). In this paper, we compare the predictions of our ``hybrid approach to galaxy evolution to observations at moderate and high redshift. We find that the models are in fairly good agreement with observations up to z~1, while some problems appear at higher redshift (provided there is no selection bias in the data); these discrepancies may suggest that galaxy mergers (not considered in this work) played a non negligible role at z>1. We also predict the existence of a ``universal correlation between abundance gradients and disc scalelengths, independent of redshift.
110 - S. Recchi 2013
In this review I give a summary of the state-of-the-art for what concerns the chemo-dynamical numerical modelling of galaxies in general and of dwarf galaxies in particular. In particular, I focus my attention on (i) initial conditions; (ii) the equa tions to solve; (iii) the star formation process in galaxies; (iv) the initial mass function; (v) the chemical feedback; (vi) the mechanical feedback; (vii) the environmental effects. Moreover, some key results concerning the development of galactic winds in galaxies and the fate of heavy elements, freshly synthesised after an episode of star formation, have been reported. At the end of this review, I summarise the topics and physical processes, relevant for the evolution of galaxies, that in my opinion are not properly treated in modern computer simulations of galaxies and that deserve more attention in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا