ﻻ يوجد ملخص باللغة العربية
We explore the implications for the high redshift universe of ``state-of-the-art models for the chemical and spectrophotometric evolution of spiral galaxies. The models are based on simple ``scaling relations for discs, obtained in the framework of Cold Dark Matter models for galaxy formation, and were ``calibrated as to reproduce the properties of the Milky Way and of nearby discs (at redshift z~0). In this paper, we compare the predictions of our ``hybrid approach to galaxy evolution to observations at moderate and high redshift. We find that the models are in fairly good agreement with observations up to z~1, while some problems appear at higher redshift (provided there is no selection bias in the data); these discrepancies may suggest that galaxy mergers (not considered in this work) played a non negligible role at z>1. We also predict the existence of a ``universal correlation between abundance gradients and disc scalelengths, independent of redshift.
We study the chemical and spectro-photometric evolution of galactic disks with detailed models calibrated on the Milky Way and using simple scaling relations, based on currently popular semi-analytic models of galaxy formation. We compare our results
We study the star formation history of normal spirals by using a large and homogeneous data sample of local galaxies. For our analysis we utilise detailed models of chemical and spectrophotometric galactic evolution, calibrated on the Milky Way disc.
We present a new generation of chemically consistent evolutionary synthesis models for galaxies of various spectral types from E through Sd. The models follow the chemical enrichment of the ISM and take into account the increasing initial metallicity
The problem of chemo-photometric evolution of late-type galaxies is dealt with relying on prime physical arguments of energetic self-consistency between chemical enhancement of galaxy mass, through nuclear processing inside stars, and luminosity evol
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been