ﻻ يوجد ملخص باللغة العربية
We have obtained the first-principles electronic structure of solid coronene, which has been recently discovered to exhibit superconductivity with potassium doping. Since coronene, along with picene, the first aromatic superconductor, now provide a class of superconductors as solids of aromatic compounds, here we compare the two cases in examining the electronic structures. In the undoped coronene crystal, where the molecules are arranged in a herringbone structure with two molecules in a unit cell, the conduction band above an insulating gap is found to comprise four bands, which basically originate from the lowest two unoccupied molecular orbitals (doubly-degenerate, reflecting the high symmetry of the molecular shape) in an isolated molecule but the bands are entangled as in solid picene. The Fermi surface for a candidate of the structure of K$_x$coronene with $x=3$, for which superconductivity is found, comprises multiple sheets, as in doped picene but exhibiting a larger anisotropy with different topology.
To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures $T_c=7 - 20$ K, we have obtained a first-principles electro
Recently, a new organic superconductor, K-intercalated Picene with high transition temperatures $T_c$ (up to 18,K) has been discovered. We have investigated the electronic properties of the undoped relative, solid picene, using a combination of exper
We report a corrected crystal structure for the CePt2In7 superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was prev
We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and de
We study the electronic and lattice dynamical properties of compressed solid germane in the pressure range up to 200 GPa with density functional theory. A stable metallic structure, Aba2, with a base-centered orthorhombic symmetry was found to be the