ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Band Structure and Superconducting Properties of SnAs

97   0   0.0 ( 0 )
 نشر من قبل Pavel Bezotosnyi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and density functional theory (DFT) within generalized gradient approximation (GGA). The DFT/GGA calculations were done including spin-orbit coupling for both bulk and (111) slab crystal structures. Comparison of the DFT/GGA band dispersions with ARPES data shows that (111) slab much better describes ARPES data than just bulk bands. Superconducting properties of SnAs were studied experimentally by specific heat, magnetic susceptibility, magnetotransport measurements and Andreev reflection spectroscopy. Temperature dependences of the superconducting gap and of the specific heat were found to be well consistent with those expected for the single band BCS superconductors with an isotropic s-wave order parameter. Despite spin-orbit coupling is present in SnAs, our data shows no signatures of a potential unconventional superconductivity, and the characteristic BCS ratio $2Delta/T_c = 3.48 - 3.73$ is very close to the BCS value in the weak coupling limit.



قيم البحث

اقرأ أيضاً

We present the crystal structure and low temperature electronic transport properties of the intermetallic commonly known as BeB_2. In contrast to the much simpler AlB_2-type structure of the 39K superconductor MgB_2, BeB_2 forms a complex structure t ype that is nearly unique in nature. The structure has 110.5 atoms per unit cell and a stoichiometry BeB_{2.75}. Polycrystalline Be(^{10.8}B)_{2.75} is superconducting below T_c=0.72K with a critical magnetic field H_{c2}=0.175T. Isotopically pure ^{10.0}B samples of have an enhanced$T_c=0.79K, consistent with a BCS isotope effect. Hall effect measurements suggest that the material is intrinsically compensated.
Orthorhombic (space group: Pnma) Nb2P5 is a high-pressure phase that is quenchable to ambient pressure, which could viewed as the zigzag infinite P chain-inserted NbP2. We report herein the high-pressure crystal growth of Nb2P5 and the discovery of i ts superconducting transition at Tc ~ 2.6 K. The electrical resistivity, magnetization, and specific heat capacity measurements on the high-quality crystal unveiled a conventional type-II weakly coupled s-wave nature of the superconductivity, with the upper critical field Hc2(0) ~ 0.5 T, the electron-phonon coupling strength {lambda}ep ~ 0.5 - 0.8, and the Ginzburg-Landau parameter k{appa} ~ 100. The ab initio calculations on the electronic band structure unveiled nodal-line structures protected by different symmetries. The one caused by band inversion, for example, on the {Gamma}-X and U-R paths of the Brillouin zone, likely could bring nontrivial topology and hence possible nontrivial surface state on the surface. The surface states on the (100), (010) and (110) surfaces were also calculated and discussed. The discovery of the phosphorus-rich Nb2P5 superconductor would be instructive for the design of more metal phosphides superconductors which might host unconventional superconductivity or potential technical applications.
Single crystal of YCoGa5 has been grown via Ga self-flux. In this paper, we report the single crystal growth, crystallographic parameters, resistivity, heat capacity, and band structure results of YCoGa5. YCoGa5 accommodates the HoCoGa5 type structur e (space group P4/mmm (No. 123), Z = 1, a = 4.2131(6) A, c = 6.7929(13) A, which is isostructural to the extensively studied heavy fermion superconductor system CeMIn5 (M = Co, Rh, Ir) and the unconventional superconductor PuCoGa5 with Tc = 18.5 K. No superconductivity is observed down to 1.75 K. Band structure calculation results show that its band at the Fermi level is mainly composed of Co-3d and Ga-4p electrons states, which explains its similarity of physical properties to YbCoGa5 and LuCoGa5.
By means of the first-principles calculations, we have studied in details the structural, elastic and electronic properties of the new tetragonal CaBe2Ge2-type 5.2K superconductor SrPt2As2 in comparison with two hypothetical SrPt2As2 polymorphs with ThCr2Si2-type structures which differ by atomic configurations of [Pt2As2] (or [Pt2As2]) blocks. We have found that CaBe2Ge2-type SrPt2As2 is a quite unique system with complicated 2D-3D character of near-Fermi bands, and the intermediate type of the Fermi surface, which consists of electronic pockets having cylinder-like (2D) topology (typical for 122 FeAs phases) together with 3D-like electronic and hole pockets, which are characteristic for ThCr2Si2-like iron-free low-Tc superconductors. Our analysis reveals that against ThCr2Si2-like 122 phases, the other features for CaBe2Ge2-like SrPt2As2 are: (1). The essential differences of contributions of states from [Pt2As2] and [Pt2As2] blocks into near-Fermi region when the conduction is expected to be anisotropic and happening mainly in [Pt2As2] blocks; (2). The formation of the 3D system of strong covalent Pt-As bonds (inside and between of [Pt2As2]/[As2Pt2] blocks) which is responsible for enhanced stability of this polymorph, and (3). the essential charge anisotropy between the adjacent [Pt2As2] and [As2Pt2] blocks. We have predicted also that CaBe2Ge2-like SrPt2As2 is mechanically stable, relatively soft material with high compressibility and will behave in a ductile manner. On the contrary the ThCr2Si2-type SrPt2As2 polymorphs which contain only [Pt2As2] or [As2Pt2] blocks, are less stable, their Fermi surfaces adopt a multi-sheet three-dimensional type - similar to ThCr2Si2-like iron-free 122 phases, and these polymorphs will be ductile materials with high elastic anisotropy.
72 - S.Lee , H.Mori , T.Masui 2001
Here we report the growth of sub-millimeter MgB2 single crystals of various shapes under high pressure in Mg-B-N system. Structure refinement using a single-crystal X-ray diffraction analysis gives lattice parameters a=3.0851(5) A and c=3.5201(5) A w ith small reliability factors (Rw =0.025, R=0.018), which enables us to analyze the Fourier and Fourier difference maps. The maps clearly show the B sp2 orbitals and covalency of the B-B bonds. The sharp superconducting transitions at Tc =38.1-38.3K were obtained in both magnetization (DTc =0.6K) and resistivity (DTc <0.3K) measurements. Resistivity measurements with magnetic fields applied parallel and perpendicular to the Mg and B sheets reveal the anisotropic nature of this compound, with upper critical field anisotropy ratio of about 2.7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا