ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of Ferroelectric Triclinic Phases and Origin of Large Piezoelectric Responses in Highly Strained BiFeO3 films

218   0   0.0 ( 0 )
 نشر من قبل Zuhuang Chen
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The structural evolution of the strain-driven morphotropic phase boundary (MPB) in BiFeO3 films has been investigated using synchrotron x-ray diffractometry in conjunction with scanning probe microscopy. Our results demonstrate the existence of mixed-phase regions that are mainly made up of two heavily tilted ferroelectric triclinic phases. Analysis of first-principles computations suggests that these two triclinic phases originate from a phase separation of a single monoclinic state accompanied by elastic matching between the phase-separated states. These first-principle calculations further reveal that the intrinsic piezoelectric response of these two low-symmetry triclinic phases is not significantly large, which thus implies that the ease of phase transition between these two energetically close triclinic phases is likely responsible for the large piezoelectric response found in the BiFeO3 films near its MPB. These findings not only enrich the understandings of the lattice and domain structure of epitaxial BiFeO3 films but may also shed some light on the origin of enhanced piezoelectric response near MPB.

قيم البحث

اقرأ أيضاً

77 - Lu You , Zuhuang Chen , Xi Zou 2011
The novel strain-driven morphotropic phase boundary (MPB) in highly-strained BiFeO3 thin film is featured by ordered mixed phase nanodomains (MPNs). Through scanning probe microscopy and synchrotron X-ray diffraction, eight structural variants of the MPNs are identified. Detailed polarization configurations within the MPNs are resolved using angular-dependent piezoelectric force microscopy. Guided by the obtained results, deterministic manipulation of the MPNs has been demonstrated by controlling the motion of the local probe. These findings are important for in-depth understanding of the ultrahigh electromechanical response arising from phase transformation between competing phases, enabling future explorations on the electronic structure, magnetoelectricity and other functionalities in this new MPB system.
We present the temperature- and thickness-dependent structural and morphological evolution of strain induced transformations in highly-strained epitaxial BiFeO3 films deposited on LaAlO3 (001) substrates. Using high-resolution X-ray diffraction and t emperature-dependent scanning-probe-based studies we observe a complex temperature- and thickness-dependent evolution of phases in this system. A thickness-dependent transformation from a single monoclinically distorted tetragonal-like phase to a complex mixed-phase structure in films with thicknesses up to ~200 nm is the consequence of a strain-induced spinodal instability in the BiFeO3/LaAlO3 system. Additionally, a breakdown of this strain-stabilized metastable mixed-phase structure to non-epitaxial microcrystals of the parent rhombohedral structure of BiFeO3 is observed to occur at a critical thickness of ~300 nm. We further propose a mechanism for this abrupt breakdown that provides insight into the competing nature of the phases in this system.
The nanostructural evolution of the strain-induced structural phase transition in BiFeO3 is examined. Using high-resolution X-ray diffraction and scanning-probe microscopy-based studies we have uniquely identified and examined the numerous phases pre sent at these phase boundaries and have discovered an intermediate monoclinic phase in addition to the previously observed rhombohedral- and tetragonal-like phases. Further analysis has determined that the so-called mixed-phase regions of these films are not mixtures of rhombohedral- and tetragonal-like phases, but intimate mixtures of highly-distorted monoclinic phases with no evidence for the presence of the rhombohedral-like parent phase. Finally, we propose a mechanism for the enhanced electromechanical response in these films including how these phases interact at the nanoscale to produce large surface strains.
109 - Zuhuang Chen , Jian Liu , Yajun Qi 2015
There is growing evidence that domain walls in ferroics can possess emergent properties that are absent in bulk materials. For example, 180 domain walls in the ferroelectric-antiferromagnetic BiFeO3 are particularly interesting because they have been predicted to possess a range of intriguing behaviors; including electronic conduction and enhanced magnetization. To date, however, ordered arrays of such domain structures have not been reported. Here, we report the observation of 180 stripe nanodomains in (110)-oriented BiFeO3 thin films grown on orthorhombic GdScO3 (010)O substrates, and their impact on exchange coupling to metallic ferromagnets. Nanoscale ferroelectric 180 stripe domains with {112 } domain walls were observed in films < 32 nm thick to compensate for large depolarization fields. With increasing film thickness, we observe a domain structure crossover from the depolarization field-driven 180 stripe nanodomains to 71 domains determined by the elastic energy. Interestingly, these 180 domain walls (which are typically cylindrical or meandering in nature due to a lack of strong anisotropy associated with the energy of such walls) are found to be highly-ordered. Additional studies of Co0.9Fe0.1/BiFeO3 heterostructures reveal exchange bias and exchange enhancement in heterostructures based-on BiFeO3 with 180 domain walls and an absence of exchange bias in heterostructures based-on BiFeO3 with 71 domain walls; suggesting that the 180 domain walls could be the possible source for pinned uncompensated spins that give rise to exchange bias. This is further confirmed by X-ray circular magnetic dichroism studies, which demonstrate that films with predominantly 180 domain walls have larger magnetization than those with primarily 71 domain walls. Our results could be useful to extract the structure of domain walls and to explore domain wall functionalities in BiFeO3.
101 - J. Guyonnet , H. Bea , P. Paruch 2010
In purely c-axis oriented PbZr$_{0.2}$Ti$_{0.8}$O$_3$ ferroelectric thin films, a lateral piezoresponse force microscopy signal is observed at the position of 180{deg}domain walls, where the out-of-plane oriented polarization is reversed. Using elect ric force microscopy measurements we exclude electrostatic effects as the origin of this signal. Moreover, our mechanical simulations of the tip/cantilever system show that the small tilt of the surface at the domain wall below the tip does not satisfactorily explain the observed signal either. We thus attribute this lateral piezoresponse at domain walls to their sideways motion (shear) under the applied electric field. From simple elastic considerations and the conservation of volume of the unit cell, we would expect a similar lateral signal more generally in other ferroelectric materials, and for all types of domain walls in which the out-of-plane component of the polarization is reversed through the domain wall. We show that in BiFeO$_3$ thin films, with 180, 109 and 71{deg}domain walls, this is indeed the case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا