ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale structure and mechanism for enhanced electromechanical response of highly-strained BiFeO3 thin films

110   0   0.0 ( 0 )
 نشر من قبل Lane Martin Lane Martin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nanostructural evolution of the strain-induced structural phase transition in BiFeO3 is examined. Using high-resolution X-ray diffraction and scanning-probe microscopy-based studies we have uniquely identified and examined the numerous phases present at these phase boundaries and have discovered an intermediate monoclinic phase in addition to the previously observed rhombohedral- and tetragonal-like phases. Further analysis has determined that the so-called mixed-phase regions of these films are not mixtures of rhombohedral- and tetragonal-like phases, but intimate mixtures of highly-distorted monoclinic phases with no evidence for the presence of the rhombohedral-like parent phase. Finally, we propose a mechanism for the enhanced electromechanical response in these films including how these phases interact at the nanoscale to produce large surface strains.

قيم البحث

اقرأ أيضاً

BiFeO3 thin films with various thicknesses were grown epitaxially on (001) LaSrAlO4 single crystal substrates using pulsed laser deposition. High resolution x-ray diffraction measurements revealed that a tetragonal-like phase with c-lattice constant ~4.65 {AA} is stabilized by a large misfit strain. Besides, a rhombohedral-like phase with c-lattice constant ~3.99 {AA} was also detected at film thickness of ~50 nm and above to relieve large misfit strains. In-plane piezoelectric force microscopy studies showed clear signals and self-assembled nanoscale stripe domain structure for the tetragonal-like regions. These findings suggest a complex picture of nanoscale domain patterns in BiFeO3 thin films subjected to large compressive strains.
77 - Lu You , Zuhuang Chen , Xi Zou 2011
The novel strain-driven morphotropic phase boundary (MPB) in highly-strained BiFeO3 thin film is featured by ordered mixed phase nanodomains (MPNs). Through scanning probe microscopy and synchrotron X-ray diffraction, eight structural variants of the MPNs are identified. Detailed polarization configurations within the MPNs are resolved using angular-dependent piezoelectric force microscopy. Guided by the obtained results, deterministic manipulation of the MPNs has been demonstrated by controlling the motion of the local probe. These findings are important for in-depth understanding of the ultrahigh electromechanical response arising from phase transformation between competing phases, enabling future explorations on the electronic structure, magnetoelectricity and other functionalities in this new MPB system.
We present the temperature- and thickness-dependent structural and morphological evolution of strain induced transformations in highly-strained epitaxial BiFeO3 films deposited on LaAlO3 (001) substrates. Using high-resolution X-ray diffraction and t emperature-dependent scanning-probe-based studies we observe a complex temperature- and thickness-dependent evolution of phases in this system. A thickness-dependent transformation from a single monoclinically distorted tetragonal-like phase to a complex mixed-phase structure in films with thicknesses up to ~200 nm is the consequence of a strain-induced spinodal instability in the BiFeO3/LaAlO3 system. Additionally, a breakdown of this strain-stabilized metastable mixed-phase structure to non-epitaxial microcrystals of the parent rhombohedral structure of BiFeO3 is observed to occur at a critical thickness of ~300 nm. We further propose a mechanism for this abrupt breakdown that provides insight into the competing nature of the phases in this system.
We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicate that the nearly-tetragonal film s have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy we provide clear evidence of ferroelectric switching of the tetragonal phase but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically-driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material which is promising for a plethora of applications.
We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement ) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degree ferroelectric domain walls in the BiFeO3 thin films which have been probed via piezoresponse force microscopy and x-ray magnetic circular dichroism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا