ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermochemistry and Photochemistry in Cooler Hydrogen Dominated Extrasolar Planets: The Case of GJ436b

35   0   0.0 ( 0 )
 نشر من قبل Michael Line Mr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O and N reactions (most importantly for CH$_4$ to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows ab initio chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler ($T_{eff} < 10^3$ K) extrasolar giant planets. In particular, we choose to model the nearby hot Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent {it Spitzer} measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the dayside of GJ 436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ 436b is cooler than many of the heavily irradiated hot Jovians and thermally favorable for CH$_4$, and thus requires an efficient mechanism for destroying it. We include realistic estimates of ultraviolet flux from the parent dM star GJ 436, to bound the direct photolysis and photosensitized depletion of CH$_4$. While our models indicate fairly rich disequilibrium conditions are likely in cooler exoplanets over a range of planetary metallicities, we are unable to generate the conditions for substantial CH$_4$ destruction. One possibility is an anomalous source of abundant H atoms between 0.01-1 bars (which attack CH$_4$), but we cannot as yet identify an efficient means to produce these hot atoms.

قيم البحث

اقرأ أيضاً

158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
443 - S. Marchi 2009
The extrasolar planets (EPs) so far detected are very different to the planets in our own Solar System. Many of them have Jupiter-like masses and close-in orbits (the so-called hot planets, HPs), with orbital periods of only a few days. In this paper , we present a new statistical analysis of the observed EPs, focusing on the origin of the HPs. Among the several HP formation mechanisms proposed so far, the two main formation mechanisms are type II migration and scattering. In both cases, planets form beyond the so-called snow-line of the protoplanetary disk and then migrate inward due to angular momentum and energy exchange with either the protoplanetary disk or with companion planets. Although theoretical studies produce a range of observed features, no firm correspondence between the observed EPs and models has yet been established. In our analysis, by means of principal component analysis and hierarchical cluster analysis, we find convincing indications for the existence of two types of HPs, whose parameters reflect physical mechanisms of type II migration and scattering.
Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation pe riod and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.
The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here we ask if we could distinguish rocky planets with recent major volcanism by remo te observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present day Earth, derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloudcover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth to super-Earth sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars using ground based telescopes, and report the frequency and magnitude of the expected signatures. Transit probability of planet in the habitable zone decreases with distance to the host star, making small, close by host stars the best targets
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, reaching eventually a zero value, only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of {it all} rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا