ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Volcanism on Extrasolar Planets

116   0   0.0 ( 0 )
 نشر من قبل Lisa Kaltenegger
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here we ask if we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present day Earth, derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloudcover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth to super-Earth sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars using ground based telescopes, and report the frequency and magnitude of the expected signatures. Transit probability of planet in the habitable zone decreases with distance to the host star, making small, close by host stars the best targets

قيم البحث

اقرأ أيضاً

We place the first constraints on the obliquity of a planetary-mass companion (PMC) outside of the Solar System. Our target is the directly imaged system 2MASS J01225093-2439505 (2M0122), which consists of a 120 Myr 0.4 M_sun star hosting a 12-27 M_J companion at 50 AU. We constrain all three of the systems angular momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (vsini) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from HST to obtain spin axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122bs orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin-orbit resonances, and Kozai-Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk - the scenario favored for brown dwarf companions to stars - appears promising.
76 - Ing-Guey Jiang 2009
Employing a catalog of 175 extrasolar planets (exoplanets) detected by the Doppler-shift method, we constructed the independent and coupled mass-period functions. It is the first time in this field that the selection effect is considered in the coupl ed mass-period functions. Our results are consistent with those in Tabachnik and Tremaine (2002) with the major differences that we obtain a flatter mass function but a steeper period function. Moreover, our coupled mass-period functions show that about 2.5 percent of stars would have a planet with mass between Earth Mass and Neptune Mass, and about 3 percent of stars would have a planet with mass between Neptune Mass and Jupiter Mass.
Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the Northern Hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additio nally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and $ell_1$ periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique. The SOPHIE data support the detection of five planets, each with $m sin i approx 6 M_oplus$, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius $approx 1.2 R_oplus$. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a $approx 2 M_oplus$ mass estimate. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances.
92 - F. Feroz 2010
Stellar radial velocity (RV) measurements have proven to be a very successful method for detecting extrasolar planets. Analysing RV data to determine the parameters of the extrasolar planets is a significant statistical challenge owing to the presenc e of multiple planets and various degeneracies between orbital parameters. Determining the number of planets favoured by the observed data is an even more difficult task. Bayesian model selection provides a mathematically rigorous solution to this problem by calculating marginal posterior probabilities of models with different number of planets, but the use of this method in extrasolar planetary searches has been hampered by the computational cost of the evaluating Bayesian evidence. Nonetheless, Bayesian model selection has the potential to improve the interpretation of existing observational data and possibly detect yet undiscovered planets. We present a new and efficient Bayesian method for determining the number of extrasolar planets, as well as for inferring their orbital parameters, without having to calculate directly the Bayesian evidence for models containing a large number of planets. Instead, we work iteratively and at each iteration obtain a conservative lower limit on the odds ratio for the inclusion of an additional planet into the model. We apply this method to simulated data-sets containing one and two planets and successfully recover the correct number of planets and reliable constraints on the orbital parameters. We also apply our method to RV measurements of HD 37124, 47 Ursae Majoris and HD 10180. For HD 37124, we confirm that the current data strongly favour a three-planet system. We find strong evidence for the presence of a fourth planet in 47 Ursae Majoris, but its orbital period is suspiciously close to one year, casting doubt on its validity. For HD 10180 we find strong evidence for a six-planet system.
158 - Ch. Helling 2016
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud par ticles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $gg B_{rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g., magnetic field induced star spots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا