ترغب بنشر مسار تعليمي؟ اضغط هنا

Matrix integrals and enumeration of maps

125   0   0.0 ( 0 )
 نشر من قبل J\\'er\\'emie Bouttier
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Bouttier




اسأل ChatGPT حول البحث

This chapter is an introduction to the connection between random matrices and maps, i.e graphs drawn on surfaces. We concentrate on the one-matrix model and explain how it encodes and allows to solve a map enumeration problem.



قيم البحث

اقرأ أيضاً

161 - G. Borot , B. Eynard 2009
We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and the correlation functions of the lattice) obey the topological recursion, as usual in matrix models, i.e they are given by the symplectic invariants of their spectral curve.
120 - G. Borot , J. Bouttier , E.Guitter 2012
We use the nested loop approach to investigate loop models on random planar maps where the domains delimited by the loops are given two alternating colors, which can be assigned different local weights, hence allowing for an explicit Z_2 domain symme try breaking. Each loop receives a non local weight n, as well as a local bending energy which controls loop turns. By a standard cluster construction that we review, the Q = n^2 Potts model on general random maps is mapped to a particular instance of this problem with domain-non-symmetric weights. We derive in full generality a set of coupled functional relations for a pair of generating series which encode the enumeration of loop configurations on maps with a boundary of a given color, and solve it by extending well-known complex analytic techniques. In the case where loops are fully-packed, we analyze in details the phase diagram of the model and derive exact equations for the position of its non-generic critical points. In particular, we underline that the critical Potts model on general random maps is not self-dual whenever Q eq 1. In a model with domain-symmetric weights, we also show the possibility of a spontaneous domain symmetry breaking driven by the bending energy.
214 - G. Berkolaiko , J. Kuipers 2013
To study electronic transport through chaotic quantum dots, there are two main theoretical approachs. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the tra nsport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and non-linear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.
We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows to express the partition function of the O(n) loop model as a special ization of the multivariate generating function of maps with controlled face degrees, where the face weights are determined by a fixed point condition. We deduce a functional equation for the resolvent of the model, involving some ring generating function describing the immediate vicinity of the loops. When the ring generating function has a single pole, the model is amenable to a full solution. Physically, such situation is realized upon considering loops visiting triangles only and further weighting these loops by some local bending energy. Our model interpolates between the two previously solved cases of triangulations without bending energy and quadrangulations with rigid loops. We analyze the phase diagram of our model in details and derive in particular the location of its non-generic critical points, which are in the universality classes of the dense and dilute O(n) model coupled to 2D quantum gravity. Similar techniques are also used to solve a twisting loop model on quadrangulations where loops are forced to make turns within each visited square. Along the way, we revisit the problem of maps with controlled, possibly unbounded, face degrees and give combinatorial derivations of the one-cut lemma and of the functional equation for the resolvent.
We use the method of brackets to evaluate quadratic and quartic type integrals. We recall the operational rules of the method and give examples to illustrate its working. The method is then used to evaluate the quadratic type integrals which occur in entries 3.251.1,3,4 in the table of integrals by Gradshteyn and Ryzhik and obtain closed form expressions in terms of hypergeometric functions. The method is further used to evaluate the quartic integrals, entry 2.161.5 and 6 in the table. We also present generalization of both types of integrals with closed form expression in terms of hypergeometric functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا