ﻻ يوجد ملخص باللغة العربية
We propose a new method for Hybrid Monte Carlo (HMC) simulations with odd numbers of dynamical fermions on the lattice. It employs a different approach from polynomial or rational HMC. In this method, gamma-five hermiticity of the lattice Dirac operators is crucial and it can be applied to Wilson, domain-wall, and overlap fermions. We compare HMC simulations with two degenerate flavors and (1 + 1) degenerate flavors using optimal domain-wall fermions. The ratio of the efficiency, (number of accepted trajectories) / (simulation time), is about 3:2. The relation between pseudofermion action of chirally symmetric lattice fermions in four-dimensional(overlap) and five-dimensional(domain-wall) representation are also analyzed.
We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically.
We present a polynomial Hybrid Monte Carlo (PHMC) algorithm as an exact simulation algorithm with dynamical Kogut-Susskind fermions. The algorithm uses a Hermitian polynomial approximation for the fractional power of the KS fermion matrix. The system
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of
In this work, results are presented of Hybrid-Monte-Carlo simulations of the tight-binding Hamiltonian of graphene, coupled to an instantaneous long-range two-body potential which is modeled by a Hubbard-Stratonovich auxiliary field. We present an in
We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking