ﻻ يوجد ملخص باللغة العربية
We present a polynomial Hybrid Monte Carlo (PHMC) algorithm as an exact simulation algorithm with dynamical Kogut-Susskind fermions. The algorithm uses a Hermitian polynomial approximation for the fractional power of the KS fermion matrix. The systematic error from the polynomial approximation is removed by the Kennedy-Kuti noisy Metropolis test so that the algorithm becomes exact at a finite molecular dynamics step size. We performed numerical tests with $N_f$$=$2 case on several lattice sizes. We found that the PHMC algorithm works on a moderately large lattice of $16^4$ at $beta$$=$5.7, $m$$=$0.02 ($m_{mathrm{PS}}/m_{mathrm{V}}$$sim$0.69) with a reasonable computational time.
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of
We apply the UV-filtering preconditioner, previously used to improve the Multi-Boson algorithm, to the Polynomial Hybrid Monte Carlo (UV-PHMC) algorithm. The performance test for the algorithm is given for the plaquette gauge action and the $O(a)$-im
UKQCDs dynamical fermion project uses the Generalised Hybrid Monte-Carlo (GHMC) algorithm to generate QCD gauge configurations for a non-perturbatively O(a) improved Wilson action with two degenerate sea-quark flavours. We describe our implementation
We investigate reversibility violations in the Hybrid Monte Carlo algorithm. Those violations are inevitable when computers with finite numerical precision are being used. In SU(2) gauge theory, we study the dependence of observables on the size of t
Improved lattice actions for Kogut-Susskind quarks have been shown to improve rotational symmetry and flavor symmetry. In this work we find improved scaling behavior of the rho and nucleon masses expressed in units of a length scale obtained from the